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Preface

ICISC 2006, the Ninth International Conference on Information Security and
Cryptology was held in Busan, Korea, during November 30 - December 1, 2006.
It was organized by the Korea Institute of Information Security and Cryptology
(KIISC) in cooperation with the Ministry of Information and Communication
(MIC), Korea. The aim of this conference was to provide a forum for the presen-
tation of new results in research, development, and application in information
security and cryptology. It also intended to be a place where research information
can be exchanged.

Started in 1998, ICISC has grown into an important international conference
in the information security and cryptology area with an established reputation.
Based on this maturity, we tried an important change in the publication policy
this year. Until last year, pre-proceedings were distributed at the conference
and proceedings in Springer’s Lecture Notes in Computer Science (LNCS) were
published after the conference. This year ICISC proceedings were published in
LNCS before the conference and distributed to the participants at the conference.
We appreciate Springer for their full support and help in making this possible.

The conference received 129 submissions from 17 countries, covering all areas
of information security and cryptology. The review and selection processes were
carried out in two stages by the Program Committee of 57 prominent researchers
via online meetings through the iChair Web server. First, each paper was blind
reviewed by at least three PC members, and papers co-authored by the PC
members were reviewed by at least five PC members. Second, individual review
reports were revealed to PC members, and detailed interactive discussion on each
paper followed. Through this process the Program Committee finally selected
26 papers from 12 countries. The authors of selected papers had a few weeks to
prepare final versions of their papers, aided by comments from the reviewers.
The proceedings contain the revised versions of the accepted papers. However,
most of these final revisions were not subject to any further editorial review.

The conference program included two invited talks from eminent researchers
in information security and cryptology. Serge Vaudenay from EPFL gave an
interesting talk on RFID privacy entitled “RFID Privacy Based on Public-Key
Cryptography.” Palash Sarkar from the Indian Statistical Institute talked on
“Generic Attacks on Symmetric Ciphers,” which showed various time-memory
trade-off attacks on symmetric cipher algorithms.

We would like to thank everyone who contributed to the success of this con-
ference. First, thanks to all the authors who submitted papers to this conference.
Second, thanks to all 57 members of the Program Committee listed overleaf. It
was a truly nice experience to work with such talented and hard-working re-
searchers. Third, thanks to all the external reviewers for assisting the Program
Committee in their particular areas of expertise. Fourth, we would like to thanks
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all the participants of the event who made this event an intellectually stimulating
one through their active contribution. We also would like to thank the iChair de-
velopers in EPFL for allowing us to use their software. Finally, we are delighted
to acknowledge the partial financial support provided by Redgate, SECUi.COM,
MarkAny, and EK Manpower.

November 2006 Min Surp Rhee
Byoungcheon Lee
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RFID Privacy Based on Public-Key Cryptography
(Abstract)

Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch

Abstract. RFID systems makes it possible for a server to identify known tags
in wireless settings. As they become more and more pervasive, people privacy
is more and more threatened. In this talk, we list a few models for privacy in
RFID and compare them. We review a few protocols. We further show that strong
privacy mandates the use of public-key cryptography. Finally, we present a new
cryptosystem which is dedicated to tiny hardware and which can be used to design
secure RFID systems achieving strong privacy.

Note: this paper contains new definitions and results that are announced in this talk.
Details and proofs will appear in future papers.

Credits: the work on RFID was done together with Salvatore Bocchetti as a part of his
Master Thesis [3]. We received many suggestions from Gildas Avoine. The work on the
new cryptosystem was done together with Matthieu Finiasz [4] and was extended to-
gether with Jean-Philippe Aumasson, and Willi Meier. Part of it was done in the Master
Thesis of Jean-Philippe Aumasson [2].

1 RFID Schemes

We consider an environment with several participants. Some are called systems, others
are called tags. Every tag is associated to a system. We say that the tag belongs to the
system. Every tag is given an identification string ID. The purpose of RFID protocols
is to design a communication protocol between a system and a tag so that the system
knows whether or not the tag belongs to the system and learns the tag identification
string ID when the tag belongs to the system.

Tags have memory which contains a state. Systems have a database which contains
pairs of data associated to the tags that they own. This pair consists of the ID and a key.
Systems may also have cryptographic key materials.

An RFID scheme is defined by the following processes.

– An initialization algorithm for the system. This produces cryptographic key mate-
rials (if any).

– An algorithm to set up a tag. This algorithm takes an ID as input and produces a
tag key K and an initial state. The latter is the initial state of the tag. The former is
inserted together with ID in the database of the system that owns the tag. Note that

M.S. Rhee and B. Lee (Eds.): ICISC 2006, LNCS 4296, pp. 1–6, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S. Vaudenay

from this definition tags do not necessarily know their own ID and key. This may
(or not) be part of the initial state though.

– A 2-party communication protocol between a system and a tag. Protocols are usu-
ally initiated by the system and produce two types of outputs on the reader side: a
public output and a private output. We distinguish two types of protocol: identifi-
cation protocols and authentication protocols. As for public outputs, the two kinds
of protocols do the same. The private output of an identification protocol should be
the tag ID if it belongs to the system or ⊥ if it does not. Both outputs of an authen-
tication protocol should be the tag 1 if it belongs to the system or 0 if it does not.

A protocol is complete if the output of the protocol is correct with high probability.
Depending on the application, we may want to have a stronger security notion, namely
soundness, which says whether an adversary can make the protocol output some wrong
information. A critical issue is privacy, which means that protocols do not leak any
information which may be used by adversaries to trace tags.

2 Adversaries

In an attack, one system is first initialize and an adversary can play with it. In addition
to this, he can create tags with chosen ID which belong to the system or not. That is,
the tag initialization algorithm is run, the tag with specified initial state is created, and
the database of the system is updated in the case where the tag belongs to the system.
Here the adversary does not see the tag key or initial state. In addition to creating new
tags, the adversary can play with the system and the tags. We distinguish two kinds of
tags: tags that are free from tags that are drawn. Tags can move from a free status to a
drawn one and vice versa. A drawn tag is a tag which is close to the adversary so that
the adversary can trace it during the entire time it is a drawn tag. For this, drawn tags
are identified by a temporary identity that we call a virtual tag.

More concretely, we assume that the adversary has access to the following oracles.

– Init(ID,b) initializes new (free) tags of specified ID which belongs to System or not
depending on bit b.

– GetTag(distribution) → (vtag1,b1, . . . ,vtagn,bn) draws one or several free tags
at random with chosen probability distribution. This oracle returns “virtual tags”
names and bits telling whether they belong to the system or not.

– Free(vtag) frees a drawn tag.
– Launch→ π launches a new protocol instance with reader.
– SendReader(m,π)→m′ resp. SendTag(m,vtag)→m′ sends protocol message m to

reader resp. a drawn tag and returns the answer m′ (if any). By convention, we write
Execute(vtag)→ (π,transcript) as a macro oracle call instead of one Launch→ π
followed by a succession of SendReader(mi,π)→mi+1 and SendTag(mi+1,vtag)→
mi+2 calls. The protocol transcript is the concatenation of all messages mi.

– Result(π)→ x tells 1 if the output of the protocol instance π is a tag ID or 0 if the
output is ⊥.

– Corrupt(vtag)→ S corrupts a drawn tag and gets its internal state S.
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We define several classes of adversaries.

– Strong adversaries can use the oracles as they want.
– Forward adversaries can only use Corrupt queries at the end of the attack. That is,

a Corrupt query can only be followed by other Corrupt queries.
– Weak adversaries are not allowed to make Corrupt queries.
– Narrow-strong (resp. narrow-forward, narrow-weak) adversaries are strong (resp.

forward, weak) adversaries who are not allowed to make Result queries.

3 Security of RFID Schemes

Let us consider an arbitrary adversary which can be written as follows.

1: Init(1,b1), ..., Init(n,bn)
2: pick i ∈ {1, . . . ,n} at random
3: (vtag,b)← GetTag(i)
4: π← Execute(vtag)

The adversary creates n tags which belong or not to the system. Then, it draws one tag
and runs a protocol. We say that this adversary fails iff the output of the protocol is what
it is meant to be, namely i when bi = 1 and ⊥ otherwise. We say that the protocol is
complete iff the probability of success of any of these adversaries is negligible.

Let us consider an arbitrary adversary which can be written as follows.

1: for i = 1 to n do
2: Init(i,1)
3: vtagi ← GetTag(i)
4: end for
5: (training phase) do any oracle call except Init, GetTag, Free
6: π← Launch
7: (attack phase) do any oracle call except Init, GetTag, Free

We say that the adversary succeeds iff

– instance π is complete at the end of the attack phase,
– the output of π is ID �=⊥ (i.e. π identified a legitimate tag ID),
– tag ID did not complete a protocol run during the attack phase,
– tag ID was not corrupted.

We say that the protocol is sound iff the probability of success of any of these adver-
saries is negligible.

4 Privacy

To define privacy, we consider adversaries who output a list of virtual tags and a rela-
tion between their ID strings. The adversary wins if the ID strings of these tags satisfy
the relation. Since some adversaries may win by giving trivial relations, we define the
significance of an adversary by his ability to distinguish from a simulated run. More
concretely, a blinder is an interface between the adversary and the oracles which let all
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queries pass except Lauch/SendReader/SendTag/Result queries whose output are sim-
ulated. The adversary “plugged” to a blinder is an adversary by itself who never queries
the Lauch/SendReader/SendTag/Result oracles. The original adversary is significant if
for any blinder the difference of the wining probability of the two adversaries is high.

An RFID system provides strong (resp. forward, weak, narrow-strong,
narrow-forward, narrow-weak) privacy if there is no significant strong (resp. forward,
weak, narrow-strong, narrow-forward, narrow-weak) adversary. The following implica-
tions are straightforward.

strong privacy ⇒ forward privacy ⇒ weak privacy
⇓ ⇓ ⇓

narrow-strong privacy ⇒ narrow-forward privacy ⇒ narrow-weak privacy

5 Our Results

We can prove that

– our six privacy notions are pairwise different;
– strong privacy cannot be achieved;
– forward privacy can be achieved without public-key cryptography, in principle;
– an RFID system with narrow-strong privacy can be transformed into a secure key

agreement protocol, which implies that this notion of privacy cannot be achieve
without paying the price of public-key cryptography;

– a semantically secure public-key cryptosystem can be used to make an RFID sys-
tem with narrow-strong privacy;

– a public-key cryptosystem secure against adaptive chosen ciphertext attacks can
be used to make a secure RFID system with forward privacy and narrow-strong
privacy.

The protocol in the last two results works as follows.

– The initialization algorithm for the system generates a public/private key pair for
the cryptosystem.

– The setup algorithm for the tag generates a random key K for the tag and set the
initial state to the vector including ID, K, and the public key of the system.

– The identification protocol works as depicted on Fig. 1. The system first picks a
random a, sends it to the tag. Then, the tag encrypts ID, K, and a together by using
the public key and sends the ciphertext to the system. Finally, the system decrypts
using the private key, checks that a is correct and that ID and K are consistent with
the database. The output of the protocol is ID.

Tag System
a←−−−−−−−−−−−−−−−− pick a

c = Enc(IDtag||Ktag||a) c−−−−−−−−−−−−−−−−→ Dec(c), check

Fig. 1. Identification Protocol Based on a Public-Key Cryptosystem
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6 TCHo

We present here a simple cryptosystem that can be used for tiny hardwares. We use a
security parameter s which defines some parameters w, d, �, dmin, dmax, γ, k. To make it
more precise, we can take

w = 45 d = 25820 � = 50000 dmin = 5800 dmax = 7000 γ = 0.9810 k = 128.

Asymptotically, we take

w = Θ(s) d = Θ(s3) = � dmin = Θ(s2) = dmax γ = 1−Θ
(

1
s

)
k = Θ(s).

Key generation. We pick a random polynomial K over GF(2) of degree d with constant
factor 1 and weight w until it has a primitive factor P of degree dP in [dmin,dmax]. The
public key is P. It is of length at most dmax = O(s2) The private key is K. It is of length
at most w log2 d = O(s logs) The complexity is O(s6 logs log logs).

Encryption. To encrypt a k-bit plaintext, we set an LFSR with characteristic polynomial
P to a random string, we produce a bit stream of length �. We XOR it to �/k repetitions
of the plaintext. We XOR it again to the output of a random source producing � inde-
pendent bits with bias γ. The result is the ciphertext: a bit-string of length �. Encryption
is depicted on Fig. 2. The complexity is O(s5). The plaintext is of length k = Θ(s). The
ciphertext is of length � = O(s3).

Decryption. To decrypt, we make combination of the ciphertext bits by using K. We ob-
tain �−d bits. We do majority logic decoding and recover the plaintext. The complexity
is O(s4).

Reliability, performances, and security. Heuristic arguments show that the probability
that decryption does not produce the right plaintext is less than 9 · 10−9 for our pa-
rameters. (Asymptotically, this probability is exp

(
−Ω(s2)

)
, heuristically.) The cost to

implement encryption in RFID tags relates to the cost of a random generator and an

R1 �

X �

R2 �

Repeat �⊕
�

Noiseγ

� Y
�

LFSRP

k bits � bits

degree
dP ∈ [dmin,dmax]

Fig. 2. TCHo Encryption
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LFSR of dP bits (that is at most 7000 gates here). We can encrypt arbitrary messages
using hybrid encryption, requiring an additional symmetric encryption scheme. Our
scheme is semantically secure provided that

– it is hard to find a multiple of a polynomial of degree dP with weight w and degree
d when such polynomial exists;

– we cannot distinguish the output of the LFSR of length dP XORed to biased bits of
bias γ from a uniformly distributed string.

So far, the best algorithm to break semantic security in TCHo with our parameters
vector has an advantage/complexity ratio of 2−65 with pessimistic estimates. Asymp-
totically, this best ratio is exp(−Ω(s))/s2.

7 IND-CCA Construction

Given two random oracles F and H, the [1] construction based on tag-KEM/DEM trans-
forms TCHo into an IND-CCA secure public-key cryptosystem. To encrypt a plaintext
X with random bits σ, we compute y = X + F(σ) (the data encapsulation) and the
TCHo encryption of σ with random bits (R1,R2) = H(σ,y) (the key encapsulation with
tag y). The ciphertext is the TCHo ciphertext concatenated with y. Namely,

Enc(X ;σ) = TCHo.enc(X ;H(σ,y)) || y.

To decrypt, we first decrypt the TCHo ciphertext to recover σ. We subtract F(σ) to y
and get the plaintext X . Additionally, we check that the TCHo encryption used the right
H(σ,y) random bits.
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Abstract. In this article, we present an improved collision attack on
the hash function proposed by Shin et al. at PKC’98. The attack has
a complexity of about 220.5 hash computations, while the previous at-
tack of Chang et al. presented at SAC 2002 has a complexity of about
237.13 hash computations. In the analysis of the hash function we com-
bined existing approaches with recent results in cryptanalysis of hash
functions. We show that message-dependent rotations can be exploited
to construct collisions. The weak design of the step function facilitates
high-probability multi-block collisions.

Keywords: cryptanalysis, collision attack, differential attack, collision,
near-collision, hash functions.

1 Introduction

Recently, weaknesses in many commonly used hash functions, such as MD5 and
SHA-1 have been found. These breakthrough results in the cryptanalysis of hash
functions are the motivation for intensive research in the design and analysis of
hash functions. It is of special interest whether or not existing attack methods,
which have been successfully used to break MD5 and SHA-1, can be extended
to other hash functions as well. Based on this motivation, we present a collision
attack on the hash function proposed by Shin et al. at PKC’98. The attack
adapts and extends existing methods leading to an attack complexity of about
220.5 hash computations. This is an improvement by a factor of 216.5 compared
to the collision attack presented by Chang et al. at SAC 2002. In addition to the
improved collision attack this article illustrates how powerful recently invented
methods are and shows how they can be extended to other hash functions such
as the hash function proposal from PKC’98.
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Table 1. Notation

Notation Meaning

A ∨ B logical OR of two bit-strings A and B
A ∧ B logical AND of two bit-strings A and B
A ⊕ B logical XOR of two bit-strings A and B
A ≪ n bit-rotation of A by n positions to the left
A ≫ n bit-rotation of A by n positions to the right

Mj message block j (512-bits)
mi message word i (32-bits)
wi expanded message word i (32-bits)

step single execution of the step function
round set of consecutive steps, has a size of 24 (1 round = 24 steps)

An important contribution of this article is that we analyze message-
dependent rotations, a property not existing for instance in MD5 and SHA-1.
Our conclusions are that the message-dependent rotations decrease the secu-
rity of the hash function. The weak design of the step function in combination
with the used Boolean functions facilitates the construction of high-probability
multi-block collisions.

The remainder of this article is structured as follows. A description of the hash
function is given in Section 2. The basic attack strategy that is used to improve
all existing collision attacks on the hash function is described in Section 3. In
Section 4, we present the characteristic used for the improved collision attack.
Based on this characteristic we construct a near-collision in Section 5 and finally
we present a collision in Section 6. A detailed analysis of the overall attack
complexity is given in Section 7. A sample colliding message pair is presented in
Section 8 and conclusions are given in Section 9.

2 Description of the Hash Function Proposed at PKC’98

The hash function was proposed by Shin et al. [5] at PKC’98. It is an iterative
hash function that processes 512-bit input message blocks and produces a 160-bit
hash value. In the following, we briefly describe the hash function. It basically
consists of two parts: message expansion and state update transformation. A
detailed description of the hash function is given in [5].

Since Shin et al. did not name their hash function, we will refer to it as
PKC-hash for the remainder of this article. Throughout the remainder of this
article, we will follow the notation given in Table 1.

Message Expansion. The message expansion of PKC-hash is a permutation
of 24 expanded message words in each round, where different permutation values
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are used in each round. The 24 expanded message words wi used in each round
are constructed from the 16 input message words mi in the following way:

wi =

{
mi 0 ≤ i ≤ 15
(wi−4 ⊕ wi−9 ⊕ wi−14 ⊕ wi−16) ≪ 1 16 ≤ i ≤ 23.

For the ordering of the message words the permutation ρ is used.

Round 1 Round 2 Round 3 Round 4

id ρ ρ2 ρ3

The permutation ρ is defined as following.

i 0 1 2 3 4 5 6 7 8 9 10 11

ρ(i) 4 21 17 1 23 18 12 10 5 16 8 0

i 12 13 14 15 16 17 18 19 20 21 22 23

ρ(i) 20 3 22 6 11 19 15 2 7 14 9 13

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of five 32-bit registers and updates them in 4 rounds
of 24 steps each. Figure 1 shows one step of the state update transformation of
the hash function.

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Kj

Wi <<<      10

<<<      s

Fig. 1. The step function of the hash function

The function f is different in each round: f0 is used in the first round, f1 is used
in round 2 and round 4, and f2 is used in round 3.

f0(x1, x2, x3, x4, x5) = (x1 ∧ x2)⊕ (x3 ∧ x4)⊕ (x2 ∧ x3 ∧ x4)⊕ x5

f1(x1, x2, x3, x4, x5) = x2 ⊕ ((x4 ∧ x5) ∨ (x1 ∧ x3))
f2(x1, x2, x3, x4, x5) = x1 ⊕ (x2 ∧ (x1 ⊕ x4))⊕ (((x1 ∧ x4)⊕ x3) ∨ x5)
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A step constant Kj is added in every step; the constant is different for each
round. Different rotation values si are used in each step. The rotation values are
dependent on the message words. The rotation values si, for i = 0, . . . , 23 are
calculated in the following way:

si = wi mod 32

The rotation values are permuted in each round. Again the permutation ρ is
used, but in reverse sequence.

Round 1 Round 2 Round 3 Round 4

ρ3 ρ2 ρ1 id

After the last step of the state update transformation, the initial value and the
output values of the last step are combined, resulting in the final value of one
iteration known as Davies-Meyer hash construction (feed forward). In detail, the
feed forward is a word-wise modular addition of the IV and the output of the
state update transformation. The result is the final hash value or the initial value
for the next message block.

3 Our Attack Strategy

In the following, we present the attack strategy we use to improve the colli-
sion attack on PKC-hash. It is based on recent results in cryptanalysis of hash
functions [6,7,8]. The attack can be basically described as follows.

1. Find a characteristic for the hash function that holds with high probability
for the last 3 rounds of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round.
3. Use basic message modification techniques to fulfill all conditions for the

characteristic in the first round.
4. Use random trials to find values for the message bits such that the message

also follows the characteristic in the last 3 rounds.

Observation 1. For the first steps the probability of the characteristic is not
important, because the conditions that have to be satisfied such that the character-
istic holds can be easily fulfilled for these steps using basic message modification
techniques [6,8].

Observation 2. Multi-block messages can be used to turn related near-collisions
into a collision.

Since Biham and Chen observed in [1] that near-collisions are easier to find than
collisions, we will use Observation 2 in Section 4 to improve our attack.
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To find a characteristic which holds with high probability, we exploit the struc-
ture of the hash function. Considering the design of the step function we made
the following observations. We use these observations in Section 4 to construct
a characteristic which holds with high probability.

Observation 3. The rotation values sj of the state update transformation are
dependent on the values of the expanded message words.

This gives the attacker more degrees of freedom for constructing a good charac-
teristic. The observation can be used to improve the probability of the charac-
teristic significantly, see Section 4.

Observation 4. Due to the message-dependent rotation values the step function
is not invertible.

This means we could try to construct collisions by using different wj , w
′
j and

sj , s
′
j which have the property that Bj+1 = B′

j+1. However, the complexity for
constructing a collision with this method is too high for a reasonable attack.

Observation 5. The function f can either preserve or absorb an input differ-
ence. This gives the attacker more flexibility for constructing the characteristic.

Observation 6. Only the expanded message word w and the output of the f
function is used to update state variable B in each step.

From Observation 5 it follows that differences in the state variables can be
canceled by using the differential properties of the f function. In particular,
a difference in Bj+1 introduced in step j through a difference in the expanded
message word wj (referred to as disturbance) can be canceled within a few steps.

The number of steps needed for canceling a single disturbance depends on the
function f and the rotation values sj of the step function. While we need at least
5 steps to cancel a disturbance in round 3, we need at least 6 steps to cancel a
disturbance in round 1, 2 and 4. This is due to the fact that we cannot always
block the input differences of f0 and f1. A detailed analysis of the differential
properties of f0, f1 and f2 is given in [2]. In Appendix A, we give the local
collisions and related probabilities for each round of the hash function.

However, to get a characteristic that holds with high probability, we have
to minimize the number of disturbances in each round. This can be done by
minimizing the number of differences in the expanded message.

Observation 7. The minimal number of differences in the expanded message
words is 2 for each round (8 in total).

This follows from the inspection of the linear message expansion, which uses 16
input message words to generate 24 expanded message words. A permutation of
these 24 words is used in each round of the hash function and hence the number
of disturbances in each round is the same. Based on these observations, we will
construct a characteristic which holds with high probability in Section 4.
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4 The New Improved Collision Attack

In this section, we describe the characteristic we use for the improved collision
attack on PKC-hash. Before presenting the characteristic in Section 4.2 and
Section 4.3, we briefly describe how the characteristic has been obtained in the
following section.

4.1 Finding a good Characteristic

In the past, it has been shown that it is easier to find near-collision than collision
within a hash function. Since two message blocks can be used to turn a near-
collision into a collision (see Observation 2), we will consider near-collisions in the
analysis as well. Note that the attacker has full control on the expanded message
words in the first 16 steps of the hash function. Hence, it is easy to find a message
that follows the characteristic in the first 16 steps, because the conditions for
the first 16 steps can be fulfilled by using basic message modification techniques.
Therefore, only the probability of the characteristic in the remaining 80 steps
determines the attack complexity. In order to keep the complexity low, we want
to have as few disturbances in the last 80 steps as possible. This can be achieved
by choosing the differences in the message words in such a way that there are
only a few differences in the expanded message. We have found the following 4
options which have only 2 differences in the expanded message words in each
round. Note that 2 is a matching lower bound for the number of differences in
the expanded message words in each round (see Observation 7).

Δw8,j = Δw13,j (1)
Δw9,j = Δw14,j (2)

Δw10,j = Δw15,j (3)
Δw11,j = Δw20,(j+1) mod 32 (4)

Out of this four cases, we select option (2) with j = 32, i.e. Δw9 = Δw14 =
80000000 to maximize the probability of the characteristic. By choosing the
difference in the MSB no conditions are needed for the modular addition, which
decreases the attack complexity. This is due to the fact that modular addition
behaves like an XOR for differences in the MSB.

Furthermore, we reduce the number of local collisions in round 1, 2, and 4 from
the expected value of 2 to 1 by selecting option (2). Therefore, the probability of
our characteristic is much higher than the probability of the characteristics used
in [2] and [3]. On the one hand, we increase the probability of the characteristic
remarkably, but on the other hand this leads to a nonzero difference in the state
variables after the last step of the state update transformation (a near-collision).
However, as it will be described in Section 6, we can use a second message block
to turn this near-collision into a collision without significantly increasing the
attack complexity.
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4.2 Characteristic for the First Round

The characteristic for the first round (24 steps) has probability 2−7.8. However,
all the conditions for the first 16 steps can be fulfilled by basic message modifi-
cation techniques. Since the characteristic has probability 1 for steps 16-23 (see
Table 2), the probability for the characteristic in the first round is always 1.
Therefore, the attack complexity only depends on the probability of the char-
acteristic in the last 3 rounds. In Section 4.3, we give a characteristic for the
remaining 3 rounds which holds with high probability. The characteristic for the
first round of the hash function is given in Table 2. To improve readability, we
use hexadecimal notation and denote the zero difference by ‘0’.

Table 2. Characteristic for the first round of PKC-hash

step ΔA ΔB ΔC ΔD ΔE Δw s probability

0 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

8 0 0 0 0 0 0 - 1
9 0 0 0 0 0 80000000 22 1
10 0 00200000 0 0 0 0 0 1/4
11 0 00200000 80000000 0 0 0 - 3/8
12 0 0 80000000 80000000 0 0 - 3/4
13 0 0 0 80000000 80000000 0 - 1/4
14 80000000 0 0 0 80000000 80000000 - 1/2
15 80000000 0 0 0 0 0 - 1/2
16 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

23 0 0 0 0 0 0 - 1

0 0 0 0 0 2−7.8

4.3 Characteristic for the Last 3 Rounds

Since all the conditions on the characteristic in the first round can be easily
fulfilled, only the probability of the characteristic in the last 3 rounds deter-
mines the attack complexity. Therefore, we are searching for a characteristic
which holds with high probability in the last 3 rounds. In this section, we give a
characteristic for the last 3 rounds which has probability of 2−20.5. To maximize
the probability of the characteristic, we use the fact that the rotation values of
PKC-hash are dependent on the expanded message words (see Observation 3).
The rotation values can be set to arbitrary values by setting additional condi-
tions on the expanded message words. The characteristic and necessary rotation
values are given Table 3. Note that we do not count the conditions for the rota-
tion values to the attack complexity, since these can be easily fulfilled in advance
by fixing the values of the expanded message words.
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Table 3. Characteristic for the last 3 rounds (round 2-4) of PKC-hash

step ΔA ΔB ΔC ΔD ΔE Δw s probability

24 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

44 0 0 0 0 0 0 - 1
45 0 0 0 0 0 80000000 0 1
46 0 80000000 0 0 0 80000000 - 1
47 0 0 00000200 0 0 0 - 5/8
48 0 0 0 00000200 0 0 - 1/2
49 0 0 0 0 00000200 80000000 0 1/2
50 00000200 80000000 0 0 0 0 - 1/4
51 0 0 00000200 0 0 0 - 1/2
52 0 0 0 00000200 0 0 - 1/2
53 0 0 0 0 00000200 0 - 1/2
54 00000200 0 0 0 0 0 - 1/2
55 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

61 0 0 0 0 0 0 - 1
62 0 0 0 0 0 80000000 0 1
63 0 80000000 0 0 0 0 - 1/2
64 0 0 00000200 0 0 0 - 1/2
65 0 0 0 00000200 0 0 - 1/2
66 0 0 0 0 00000200 0 - 1/2
67 00000200 0 0 0 0 0 - 1/2
68 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

74 0 0 0 0 0 0 - 1
75 0 0 0 0 0 80000000 0 1
76 0 80000000 0 0 0 0 10 1
77 0 00000200 00000200 0 0 0 - 3/8
78 0 0 00080000 00000200 0 0 - 25/64
79 0 0 0 00080000 00000200 0 - 25/64
80 00000200 0 0 0 00080000 0 - 25/64
81 00080000 0 0 0 0 0 - 5/8
82 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

92 0 0 0 0 0 0 - 1
93 0 0 0 0 0 80000000 0 1
94 0 80000000 0 0 0 0 0 1
95 0 80000000 00000200 0 0 0 0 5/8

0 80000000 00000200 00000200 0 2−20.5
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5 A Near-Collision Producing Characteristic

The characteristic for the first round (Table 2) and the characteristic for the
remaining 3 rounds (Table 3) can be combined to construct a near-collision
in one iteration of the hash function. Using the most naive method (random
trials) to find a message following the characteristic in the last 80 steps, we
get a complexity close to 220.5 hash computations. Hence, a near-collision can be
found in PKC-hash with complexity about 220.5 hash computations. By using two
message blocks, we can turn this near-collision into a collision. This is described
in detail in the following section.

6 Collision Producing Characteristic

In [8], Wang et al. show how a two-block message can be used to construct a
collision for MD5. The main idea is that a second message block can be used
to turn a near-collision after the first block into a collision after feed forward
of the second block with a certain probability. Therefore, a slightly modified
characteristic is required in the first round of the second block. This is depicted
in Fig. 2.

      state update

msg expansion

      state update

msg expansion

M1 M2

h0 = 0

24 2496 96

24 = 0 24 = 096 = 96 =

h2 = 0

h1 =

Fig. 2. A two-block collision in the hash function

While we use a characteristic of the form:

Δh0(0, 0, 0, 0, 0) �→ Δ24(0, 0, 0, 0, 0) �→ Δ96(0, 231, 29, 29, 0) (5)

in the first message block, we need a characteristic of the form:

Δh1(0, 231, 29, 29, 0) �→ Δ24(0, 0, 0, 0, 0) �→ Δ96(0, 231, 29, 29, 0) (6)

in the second block. Constructing such a characteristic is quite easy in our par-
ticular case. Due to the weak design of the step function we can block differences
in the state variables in each step of the hash function depending on the differ-
ential properties of the f function (see Observation 5). Hence, we can cancel all
differences in the state variables at the beginning of the second block within a
few steps in the first round. Note that the differential behavior of the f function
depends on the values of the state variables and we cannot control it in the first
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steps of the second block. This is due to the fact that the initial value of the
second block is fixed by calculating the first block. Therefore, in principle the
characteristic for the second block cannot be fixed until the first block has been
calculated.

However, in practice due to the large degree of freedom we have in our collision
attack, we can use the same characteristic in the second block as we use in the
first block and cancel all differences in the state variables in the first 9 steps of the
second block without affecting any of the conditions of the original characteristic.

Note that the probability of the characteristic of the second message block for
the first 16 steps can again be neglected. Hence, the probability of the second
block is also 220.5. By combining both message blocks we can construct a collision
after the feed forward of the second block with a certain probability. In detail,
we can find a two message block collision for PKC-hash with probability close
to 2−22.85. A detailed analysis is given the following section.

7 Overall Collision Attack Complexity

The complexity of the collision attack only depends on the probability of the
characteristic in the last 3 rounds of both message blocks. Note that some ad-
ditional conditions have to be met to guarantee that all differences cancel out
in the feed forward after the second block. Therefore, the second block has a
slightly lower probability than the first block.

As shown in Section 4, the characteristic for the last 3 rounds has a probability
of 2−20.5 and therefore a straightforward implementation of the collision-search
algorithm would yield a complexity of about 220.5 hash computations for the
first block and 220.5 · 22 hash computations for the second block. In order to
obtain a collision after the feed-forward of the second block, the following two
conditions on the state variables at the output of the second block have to be
satisfied

C0,10 ⊕ C81,10 = 1
D0,10 ⊕D81,10 = 1

to guarantee that all differences cancel in the feed forward of the second block.
Since the third difference is in the MSB (see Equation (6)), the difference cancels
out with probability 1 and no condition is needed. Hence, the second block has a
complexity of 220.5 ·22 hash computations and the final attack complexity would
be 220.5 + 220.5 · 22 = 222.85 hash computations to construct a collision in the
hash function.

However, there are several simple methods to improve the efficiency of the
attack. In [9], Wang et al. use a so-called early-stop technique to improve the
attack complexity for SHA-0 by a factor of 8. The main idea is that only a few
steps have to be computed after the basic message modification to check whether
or not the message follows the characteristic. If the message does not follow
the characteristic the collision-search algorithm aborts the current computation
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and starts again with a new message. It is clear that this reduces the attack
complexity. In our case, we can improve the attack complexity by a factor of
8/3, since we have to calculate on average 36 steps out of 96 steps to check
whether the chosen message follows the characteristic or not.

Furthermore, it has been shown recently in [4] that it is useful to look at all
possible characteristics in the second part of the attack (the part after message
modification, i.e. round 2-4) to get an accurate estimation of the attack com-
plexity. Since we use random trials to find a message following the characteristic
after the first round, we do not need to stick to the characteristic given in Sec-
tion 4.3. The only constraint we have is that there has to be a certain output
difference after step 96. Hence, other characteristics (with lower probability) for
the last 3 rounds do contribute as well. Therefore, the effective attack complex-
ity is slightly lower. We have done this analysis for the third round of the hash
function and have achieved an improvement by a factor of about 2. Note that
we have fixed additional rotation values in round 3 to maximize that factor.

Hence, we can update the final attack complexity to 220.5−2.4 hash computa-
tions for the first message block and 222.5−2.4 for the second block. Therefore,
the final attack complexity is 220.5−2.4 + 222.5−2.4 ≈ 220.5 hash computations.

8 A Colliding Message for the Hash Function

Applying our improved collision attack to PKC-hash, we can construct a two
message block collision with a complexity of 220.5 hash computations. The col-
liding message pair is given in Table 4. Note that h0 is the initial value, h1 is
the intermediate hash value after the first block, and h2 is the final hash value
after the second block (see Fig. 2 in Section 4).

Table 4. Colliding message pair for the hash function

h0 67452301 EFCDAB89 98BADCEF 10325476 C3D2E1F0

M0
210A7ED6 69EC9B20 71E79487 ECDB11C0 CCE394EA EBA83742 44A26AC0 9A644570
E78BA0F0 D0CD3794 AC8A28BB 29303480 F9A7F632 0F886620 28E118E9 39E4CF77

M ′
0

210A7ED6 69EC9B20 71E79487 ECDB11C0 CCE394EA EBA83742 44A26AC0 9A644570
E78BA0F0 50CD3794 AC8A28BB 29303480 F9A7F632 0F886620 A8E118E9 39E4CF77

ΔM0
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
80000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000

h1 E1A286A2 5E619A9E F341C16E 8A3B4927 AFCFF8D2

h′
1 E1A286A2 DE619A9E F341C36E 8A3B4B27 AFCFF8D2

Δh1 00000000 80000000 00000200 00000200 00000000

M1
89221C96 237E9860 76346FC0 C5F4F3E0 B66B5EAA D025B4C9 BE742420 E1362EC6
084DB7A0 3F231F9A D883A03A AFCB10A0 CDA285EE 24630660 BE9599C0 F6F63E65

M ′
1

89221C96 237E9860 76346FC0 C5F4F3E0 B66B5EAA D025B4C9 BE742420 E1362EC6
084DB7A0 BF231F9A D883A03A AFCB10A0 CDA285EE 24630660 3E9599C0 F6F63E65

ΔM1
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
80000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000

h2 B141281F FC5A987C FB473C39 A9864410 21ACD08E

h′
2 B141281F FC5A987C FB473C39 A9864410 21ACD08E
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9 Conclusion

In this article, we used recent results in the cryptanalysis of hash functions to
improve the collision attack on the hash function proposed by Shin et al. at
PCK’98. We have shown that a collision can be found in the hash function with
a complexity below 220.5 hash computations. In detail, we improve the results
of Chang et al. [2] with the new collision attack by a factor of 216.5 using a new
differential characteristic and exploiting basic message modification techniques
and multi-block collisions.

We point out that the weakness of the hash function comes from the message-
dependent rotation values and the weak design of step function. Firstly, the
degrees of freedom the attacker has to choose the rotation values can be used
to increase the probability of the attack. Secondly, the weak design of the step
function facilitates high-probability multi-block collisions. Differences in state
variables in the first step can easily be canceled within a few steps using the
differential properties of the f function.

Hence, we conclude that the Boolean functions used in the state update trans-
formation have to be chosen carefully and using only the expanded message
words and the output of the f function to update the state variables is insuffi-
cient. Furthermore, rotation values depending on the message words can reduce
the security of hash functions.
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A Local Collisions

In this section, we will give the best local collision for each round of the PKC-hash.
Since f1 is used in round 2 and round 4 the local collisions are equal for both
rounds.

Table 5. Local Collision in Round 1 (f0)

step ΔA ΔB ΔC ΔD ΔE Δw s probability

j 0 0 0 0 0 80000000 0 1
j+1 0 80000000 0 0 0 0 0 1/2
j+2 0 80000000 00000200 0 0 0 - 3/8
j+3 0 0 00000200 00000200 0 0 - 3/4
j+4 0 0 0 00000200 00000200 0 - 1/4
j+5 00000200 0 0 0 00000200 0 - 1/2
j+6 00000200 0 0 0 0 0 - 1/2

0 0 0 0 0 2−6.8
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Table 6. Local Collision in Round 2/4 (f1)

step ΔA ΔB ΔC ΔD ΔE Δw s probability

j 0 0 0 0 0 80000000 0 1
j+1 0 80000000 0 0 0 0 10 1
j+2 0 00000200 00000200 0 0 0 - 3/8
j+3 0 0 00080000 00000200 0 0 - 25/64
j+4 0 0 0 00080000 00000200 0 - 25/64
j+5 00000200 0 0 0 00080000 0 - 25/64
j+6 00080000 0 0 0 0 0 - 5/8

0 0 0 0 0 2−7.2

Table 7. Local Collision in Round 3 (f2)

step ΔA ΔB ΔC ΔD ΔE Δw s probability

j 0 0 0 0 0 80000000 0 1
j+1 0 80000000 0 0 0 0 - 1/2
j+2 0 0 00000200 0 0 0 - 1/2
j+3 0 0 0 00000200 0 0 - 1/2
j+4 0 0 0 0 00000200 0 - 1/2
j+5 00000200 0 0 0 0 0 - 1/2

0 0 0 0 0 2−5
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Abstract. In this paper, we explore potential mathematical principles
and structures that can provide the foundation for cryptographic hash
functions, and also present a simple and efficiently computable hash func-
tion based on a non-associative operation with polynomials over a finite
field of characteristic 2.

1 Introduction

Hash functions are easy-to-compute compression functions that take a variable-
length input and convert it to a fixed-length output. Hash functions are used as
compact representations, or digital fingerprints, of data and to provide message
integrity. Some hash functions in current use have been shown to be vulner-
able. In [6], the author argues that their replacements should be based on a
mathematical theory, which has yet to be created.

Before such a theory can be created, one has to describe, as detailed as possi-
ble, mathematical properties that a “good” hash function should have. Of course,
basic requirements are well known:

1. Preimage resistance (sometimes called non-invertibility): it should be com-
putationally infeasible to find an input which hashes to a specified output;

2. Second pre-image resistance: it should be computationally infeasible to find
a second input that hashes to the same output as a specified input;

3. Collision resistance: it should be computationally infeasible to find two dif-
ferent inputs that hash to the same output.

Now the problem is to determine mathematical properties of a hash function
that would ensure (or at least, make it likely) that the requirements above are
met.

Early suggestions (especially the SHA family) did not really use any mathemat-
ical ideas apart from the Merkle-Damgard construction for producing collision-
resistant hash functions from collision-resistant compression functions (see e.g.
[7]); the main idea was just to “create a mess” by using complex iterations (this
is not meant in a derogatory sense, but just as an opposite of using mathematical
structure one way or another). We have to admit that a “mess” might be good for
hiding purposes, but only to some extent. In particular, several early suggestions
were successfully attacked, see e.g. [10]. However, the market has its own rules,
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and a product that has won the market is unlikely to be replaced by something
altogether different; it is more likely that it will be slightly adjusted every time
the older version becomes outdated for one reason or another. In other words, in
20 years from now, something like SHA-32768 is more likely to be commercially
used than any hash function based on mathematical ideas. To be fair, we have to
mention an interesting direction, namely, constructing hash functions being prov-
ably as secure as underlying assumptions, e.g. as discrete logarithm assumptions;
see [4] and references therein. These hash functions however tend to be not very
efficient. For a general survey of hash functions we refer to [7].

One especially discouraging example of the trend of ignoring elegant math-
ematical ideas is the Tillich-Zémor hash function [9], which is quite simple, ef-
ficient, and intelligent, and yet it was almost completely ignored; for example,
Google search for this hash function produces about 200 results, compared to
over 18,000,000 for SHA-1. This, by any standards, is not healthy, especially
since at this time, there is no compelling reason to doubt the security of the
Tillich-Zémor hash function. To the best of our knowledge, there are just 3
published papers [3], [5], [8] offering “attacks” (i.e., exposing collisions) on this
hash function for some very special values of parameters. For “generic” values
of parameters, the Tillich-Zémor hash function withstands all known attacks;
in particular, it was shown in [1] that it is vulnerable to the attack of [3] with
probability of (approximately) 10−27. Of course, it is difficult to prove collision
resistance of the Tillich-Zémor hash function, but this is true for most other hash
functions, too. (We note that recently, a proposal for a hash function has been
made [2] where collision resistance follows from the alleged hardness of a mathe-
matical problem related to expander graphs; the authors of [2] acknowledge that
one of their constructions is similar to that of Tillich and Zemor.)

In this paper, we try to somewhat remedy the situation. First, in Sections 2
and 3, we use the Tillich-Zémor hash function as a model example to analyze
mathematical principles and structures behind a secure and efficient hash func-
tion. We speculate that a successful hash function should be based on a (finite)
dynamical system, of which the Tillich-Zémor construction is a nice example.

Then, in Section 4, we present a simple and efficiently computable hash func-
tion which is based on essentially the same dynamical system as the Tillich-
Zémor hash function is. In particular, it has the advantages of the Tillich-Zémor
hash function, but does not have its (potential) weaknesses. We suggest spe-
cific parameters for our hash function in Section 5. However, we have to say up
front that our proposal is on a conceptual level; in particular, while our hash
function is obviously (by comparing the definitions) more efficient than that of
Tillich-Zémor, we do not report actual runtimes here.

2 Tillich-Zémor Hash Function: Three Useful Features

The Tillich-Zémor hash function, unlike functions in the SHA family, is not a
block hash function, i.e., each bit is hashed individually. More specifically, the
“0” bit is hashed to a particular 2 × 2 matrix A, and the “1” bit is hashed to
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another 2 × 2 matrix B. Then a bit string is hashed simply to the product of
matrices A and B corresponding to bits in this string. For example, the bit string
1000110 is hashed to the matrix BA3B2A.

Obviously, this kind of arrangement is possible with any pair of elements A, B
of any semigroup S. The question is: what choice of semigroup S and elements
A, B makes the corresponding hash function secure? We argue here that the
choice made by Tillich and Zémor in [9] has three useful features which are, in
our opinion, significant for cryptographic security in general and for the security
of a hash function in particular.

First we recall that Tillich and Zémor use matrices A, B from the group
SL2(R), where R is a commutative ring (actually, a field) defined as R =
F2[x]/(p(x)). Here F2 is the field with two elements, F2[x] is the ring of poly-
nomials over F2, and (p(x)) is the ideal of F2[x] generated by an irreducible
polynomial p(x) of degree n (typically, n is a prime, 127 ≤ n ≤ 170); for exam-
ple, p(x) = x131 +x7 +x6 +x5 +x4+x+1. Thus, R = F2[x]/(p(x)) is isomorphic
to F2n , the field with 2n elements.

Then, the matrices A and B are:

A =
(

α 1
1 0

)
, B =

(
α α + 1
1 1

)
,

where α is a root of p(x).

Now the three useful features of the Tillich-Zémor hash function are:

1. The commutativity of the ring R is good for “diffusion”, i.e., for hiding oc-
currences of A or B in a product.

2. The periodicity of the ring R, too, is good for “diffusion”. (Periodicity means
that for any u ∈ R, there is a positive integer m such that um = u.)

3. The non-commutativity of matrix multiplication prevents from obvious col-
lisions. For example, were the multiplication commutative, the bit strings
“01” and “10” would hash to the same thing.

We emphasize once again that

COMMUTATIV ITY and PERIODICITY

are two major tools for hiding factors in a product; their importance for crypto-
graphic security in general and for the security of a hash function in particular
cannot be overestimated. Furthermore, a commutative and periodic platform
gives rise to a dynamical system, where two functions (corresponding to the “0”
and the “1” bits) act in a rather complex way. Dynamical systems with a large
number of states, even “innocent-looking” ones, usually exhibit very complex be-
havior; it is sufficient to mention the notorious “3x+1” problem. In particular,
any instances of re-occurring state are usually very difficult to predict (again,
recall the “3x+1” problem). In the context of hash functions, those correspond
to collisions, thus making the latter difficult to detect.
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At the same time, for better security, commutativity might be reinforced by
non-commutativity pretty much the same way as concrete is reinforced by steel
to produce ferroconcrete. Thus,

COMMUTATIV ITY in the corset of NON−COMMUTATIV ITY

is another important ingredient of cryptographic security. It prevents the at-
tacker from using obvious “relations”, such as ab = ba, to simplify a product.

To conclude this section, we say a few words about the efficiency of the Tillich-
Zémor hash function. Computing this function involves the following operations
with polynomials over F2:

1. Multiplication and addition of polynomials in α of degrees bounded by that
of the polynomial p(x).

2. Division of a polynomial in α whose degree is at most twice the degree of
p(x), by the polynomial p(α).

These operations are quite efficient; in fact, their time complexity is bounded
by a constant which depends only on (the degree of) the polynomial p(x). Since
the suggested degree of p(x) is fairly small (see above), the constant in question
is small, too.

3 Tillich-Zémor Hash Function: Two Potential
Weaknesses

In this section, we discuss two features of the Tillich-Zémor hash function which
may, in our opinion, yield undesirable trapdoors.

(i) The matrices A and B are invertible.
(ii) The operation (matrix multiplication) used in hashing is associative, i.e.,

a(bc) = (ab)c for any a, b, c ∈ SL2(R).

These two features together may not be good from the security point of view,
for the following reasons. First, suppose the intruder knows part of a hashed
bitstring S: say, S = S1S2, and assume the intruder knows S1. Then, because of
the property (ii) above, we have for the hashes:

H(S) = H(S1) ·H(S2). (1)

Since we assume that the intruder knows S1, he also knows H(S1), and there-
fore, by using property (i) (invertibility of hashes) and the above equality, he can
recover H(S2), thereby making it somewhat easier to recover S2 and then S.

Another, more serious, weakness implied by the associativity is the following.
Suppose a collision is found, say, H(T1) = H(T2) for some bitstrings T1, T2. Then
the equality (1) above yields, for any bitstring S: H(ST1) = H(ST2). Thus, one
collision easily yields many other.
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To be fair, we have to point out (see e.g. [8]) that the property (ii) above is
useful to make hashing more efficient because it allows one to parallelize com-
putation, e.g. to compute the hash H(S1S2) as H(S1) ·H(S2).

Finally, we note that a fairly well understood group structure of SL2(F2n)
may eventually help to find semigroup relations between the matrices A and B,
thus revealing a collision. In this sense, the absence of structure (i.e., a “mess”)
is something that can be borrowed from the SHA family in this context.

4 Hashing with Polynomials

In this section, we present a simple and efficiently computable hash function
which has the advantages of the Tillich-Zémor hash function, but does not seem
to have its (potential) weaknesses.

Let R = F2n = F2[x]/(p(x)) and α be as in the Tillich-Zémor construction
(see also our Section 2). Let P (α) and Q(α) be two elements of R; they are going
to be hashes of the “0” and the “1” bit, respectively:

H(0) = P (α), H(1) = Q(α).

The hash of the concatenation S1S2 of two bitstrings is computed by the
following recursive formula, which is only applied in the situations described below
(after the formula):

H(S1S2)=H(S1)◦H(S2) = H(S1) ·H(S2)+(H(S1))
2 ·u1(α)+(H(S2))

2 ·u2(α)+v(α),

where ui(α) and v(α) are some fixed elements of R. We note that the operation
◦ is non-associative and non-commutative if u1(α) �= u2(α).

Now suppose S is a bitstring of length n ≥ 2. To hash S:

1. Split S into blocks B1,B2, . . . of length 32 going left to right (the rightmost
block may therefore have smaller length).

2. Compute the hash of each block Bi independently, going left to right bit by
bit and using the recursive formula above with S2 being a single bit every
time.

3. Compute the hash of S inductively, going left to right block by block and
using the recursive formula above with S2 being a single block Bi every time.

We emphasize once again that if u1(α) �= u2(α), then the operation ◦ defined
above is non-associative and non-commutative. However, since the ring R itself
is commutative (and periodic), we take full advantage of commutativity and
periodicity as hiding tools here. In fact, our hash function is based on essentially
the same dynamical system as the Tillich-Zémor hash function; we just get rid
of the matrices to avoid associativity and invertibility. At the same time, since
our operation ◦ is non-commutative, we have the “commutativity in the corset
of non-commutativity” property that was discussed in our Section 2.

Thus, our hash function has the same advantages as the Tillich-Zémor hash
function does. On the other hand, it does not have the weaknesses discussed
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in our Section 3. Indeed, we have already mentioned that the operation ◦ is
non-associative. It is also “non-invertible” in the following sense. If, for some
bitstring S = S1S2, you know H(S) and H(S1), this does not allow you to find
H(S2) the way it can be done for the Tillich-Zémor hash function.

Moreover, if you know H(S1) and H(S2), this does not help you, in general,
to find H(S1S2), because the formula for H(S1S2) = H(S1)◦H(S2) is applicable
only in very special cases of S1 and S2, see the definition above. This implies,
in particular, that knowing one collision does not immediately yield any other,
contrasting the situation with the Tillich-Zémor hash function (see the previous
section).

5 Parameters

In this section, we suggest particular polynomials that can be used in the def-
inition of a hash function given in the previous section. There is no specific
motivation behind this particular choice of parameters; as with most dynamical
systems, “generic” parameters yield sufficiently complex behavior of the system.

1. In the definition of R = F2n = F2[x]/(p(x)), we suggest to take

p(x) = x163 + x7 + x6 + x5 + x4 + x + 1.

Thus, any bitstring will be hashed to a polynomial of degree at most 162
over F2, which is equivalent to hashing to a 163-bit string.

2. In the definition of H(0) = P (α), H(1) = Q(α), we suggest to take

H(0) = P (α) = α7 + 1, H(1) = Q(α) = α8 + 1.

3. In the definition of
H(S1S2) = H(S1) ◦H(S2) = H(S1) ·H(S2) + (H(S1))2 · u1(α) + (H(S2))2 ·
u2(α) + v(α), we suggest to take

u1(α) = α2, u2(α) = α, v(α) = 1.

Thus, whenever applicable,

H(S1S2) = H(S1) ·H(S2) + (H(S1))2 · α2 + (H(S2))2 · α + 1.

Below we give examples of computing H(S) for some simple bitstrings S.

1. H(00) = H(0)·H(0)+(H(0))2 ·α2+(H(0))2 ·α+1 = α16+α15+α14+α2+α.

2. H(01) = H(0) ·H(1) + (H(0))2 · α2 + (H(1))2 · α + 1 = α17 + α16 + α15 +
α8 + α7 + α2 + α.

3. H(10) = H(1) ·H(0)+(H(1))2 ·α2 +(H(0))2 ·α+1 = α18 +α8 +α7 +α2 +α.
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4. H(11) = H(1)·H(1)+(H(1))2 ·α2+(H(1))2 ·α+1 = α18+α17+α16+α2+α.

5. H(001) = H(00) ·H(1) + (H(00))2 · α2 + (H(1))2 · α + 1 =
= α34+α32+α30+α24+α23+α22+α17+α16+α14+α10+α9+α6+α4+α2+1.

6. H(010) = H(01) ·H(0) + (H(01))2 · α2 + (H(0))2 · α + 1 =
α36+α34+α32+α24+α23+α22+α18+α15+α14+α9+α8+α7+α6+α4+α2+1.

7. H(110) = H(11) ·H(0) + (H(11))2 · α2 + (H(0))2 · α + 1 =
α38+α36+α34+α25+α24+α23+α18+α17+α16+α15+α9+α8+α6+α4+α2+1.

Acknowledgement. I am indebted to Rainer Steinwandt for numerous helpful
discussions.
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Abstract. In this paper, we study multi-collision probability. For a hash
function H : D → R with |R| = n, it has been believed that we can find
an s-collision by hashing Q = n(s−1)/s times. We first show that this
probability is at most 1/s! which is very small for large s. We next show
that by hashing (s!)1/s × Q times, an s-collision is found with proba-
bility approximately 0.5 for sufficiently large n. Note that if s = 2, it
coincides with the usual birthday paradox. Hence it is a generalization
of the birthday paradox to multi-collisions.

Keywords: hash function, birthday paradox, multi-collision, collision
resistant.

1 Introduction

Let H : D → R be a hash function, where D is the domain and R is the range
such that |R| = n. A collision for H is a distinct pair x1, x2 ∈ D such that
H(x1) = H(x2). We usually require that H is collision resistant, which means
that it is hard to find a collision. This security notion is used in many cryp-
tographic applications such as digital signatures. All hash functions, however,
suffer from the so-called birthday paradox which is a generic collision-finding
attack. In this attack, we choose x1, · · · , xq ∈ D independently at random and
compute yi = H(xi) for i = 1, · · · , q. We succeed if there is a pair i, j such that
H(xi) = H(xj). It is then well known that if q = O(

√
n), then we succeed with

non-negligible probability (say, 0.5). Bellare, Kilian and Rogaway derived a nice
upper bound and a lower bound on this success probability [1, Appendix].

Multi-collisions, on the other hand, are also an important notion of hash
functions. An s-collision for H is s distinct points x1, · · · , xs ∈ D such that
H(x1) = · · · = H(xs). As a negative side, Joux [5] showed a multi-collision
attack on iterated hash functions at Crypto’04. As a positive side, the notion
of multi-collisions was used for indentification schemes by Girault and Stern [4],
for signature schemes by Brickell et al. [3] and for the micropayment scheme of
Rivest and Shamir [6]. These schemes made use of an intuition such that finding
an s-collision would be much harder than finding a usual collsion if s is large.
Indeed, as a generalization of the birthday paradox, it has been believed that

M.S. Rhee and B. Lee (Eds.): ICISC 2006, LNCS 4296, pp. 29–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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“We can find an s-collision by hashing q = n(s−1)/s x-values”

as written in [6, Sec.4] [5, Sec.2].
In this paper, we first present a negative result which shows that the above sen-

tence is wrong. More precisely, we prove that by hashing Q = n(s−1)/s x-values,
an s-collision is found with probability at most 1/s!. Note that this probability
is very small if s is large. Hence the above sentence is wrong for large s.

We next show a positive result such that by hashing q = (s!)1/s×Q x-values1,
an s-collision is found with probability approximately at least 0.5 for sufficiently
large n. Note that if s = 2, it coincides with the usual birthday paradox. Hence
we can consider that it is a generalization of the birthday paradox to multi-
collisions.

Throughout this paper, we suppose that each image y ∈ R has the same
number of preimages, that is, |H−1(y)| = |D|/|R| for all y ∈ R. In Sec. 2, we
present a recursive formula which expresses the exact probability of finding an
s-collision. In Sec. 3, we present a general lower and an upper bound of the
probability of finding an s-collision. In Sec. 4, we show a more tight lower and
an upper bound which agree within a constant factor for q ≤ n(s−1)/s. In Sec. 5,
we show our main (negative and positive) results for q = O(n(s−1)/s).

2 Exact Probability of s-Collision

In this section, we present a recursive formula for the probability of s-collision.
We will use this formula to find the exact value and to derive bounds for the
probability.

Let 2 ≤ s ≤ q ≤ n and consider the following experiment. Suppose that there
are q balls and n buckets. We throw the balls one by one at random into the
buckets. Let C(n, q, s) denote the event (called s-collision) that there exists at
least one bucket that contains at least s balls.

The above experiment mimics the generic hashing attack as follows. We call
n elements of the set R buckets. The q random x-values x1, . . . , xq are called
balls. Each time we calculate the hash value H(xi), we imagine that the ball
xi is thrown into the bucket H(xi). If a bucket r contains at least s balls, say
xi1 , . . . , xis , then we have found an s-collision H(xi1) = . . . = H(xis) = r. Thus,
the probability Pr[C(n, q, s)] models the s-collision probability.

We now present a recursive formula of Pr[C(n, q, s)].

Theorem 1

Pr[C(n, q, s)] =
1

ns−1

q∑
i=s

(
i− 1
s− 1

)(
1− 1

n

)i−s

(1− Pr[C(n− 1, i− s, s)]).

Proof. In the experiment of throwing q balls one by one at random into n buckets,
for each s ≤ i ≤ q, let C(n, q, s, i) denote the event that the ith ball causes the

1 Approximately, q ≈ (s/2.71) × n(s−1)/s from Stirling formula.
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first s-collision, that is, s-collision does not occur until the ith ball but does when
the ball is thrown. Then

Pr[C(n, q, s)] =
q∑

i=s

Pr[C(n, q, s, i)].

We can find Pr[C(n, q, s, i)] as follows:

1. One bucket (denoted by B), where the first s-collision occurs, can be selected
from n buckets in n ways;

2. s−1 balls, which are put into B can be selected from the previous i−1 balls
in

(
i−1
s−1

)
ways;

3. The probability that the s selected balls land in the one selected bucket is
1/ns;

4. The probability that for the s selected balls and the one selected bucket
B, none of the other i − s balls land in B and cause an s-collision is (1 −
1/n)i−s × (1 − Pr[C(n− 1, i− s, s)]).

Thus we have

Pr[C(n, q, s, i)] = n ×
(

i − 1

s − 1

)
× 1

ns
×

(
1 − 1

n

)i−s

×(1 − Pr[C(n − 1, i − s, s)])

=
1

ns−1

(
i − 1

s − 1

)(
1 − 1

n

)i−s

(1−Pr[C(n − 1, i − s, s)]).

Therefore,

Pr[C(n, q, s)] =
1

ns−1

q∑
i=s

(
i− 1
s− 1

)(
1− 1

n

)i−s

(1− Pr[C(n− 1, i− s, s)]).

We will use this recursive formula to calculate the exact value of the s-collision
probability and derive its bounds in the next sections. Before doing that we need
some auxiliary results. The proofs are shown in the Appendix.

Lemma 1. The following statements must hold

1. For any positive integers k, s, and i ≥ (k + 1)s,
q∑

i=s

(
i− 1
s− 1

)
=

(
q

s

)
.

2. For any positive integers k, s, and i ≥ (k + 1)s,(
i− 1

ks− 1

)(
i− ks

s

)
=

(
(k + 1)s− 1

s

)(
i− 1

(k + 1)s− 1

)
.

3. For any positive integers k ≥ 2, s, and q ≥ ks,(
ks− 1

s

)(
q

ks

)
=

k − 1
k

(
q

s

)(
q − s

(k − 1)s

)
.
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4. For any integers n, s ≥ 2,

(n− 1)s−1 > (n
s−1

s − 1)s.

5. For any 1 < a ≤ b,
a− 1
b− 1

≤ a

b

6. Let ek = (1−1/k)−k then {ek}∞k=2 is a decreasing sequence and limk→∞ ek =
e ≈ 2.7 – the Euler constant. For any 0 < x < 1, we have

e−x
k > 1− x ln ek ≈ 1− x.

7. For any integer s ≥ 2,
(s!)−1/s(s + 1)/2 > 1.

3 Bounds on the Probability of s-Collision

In this section, we present the following bounds on the probability of s-collision.

Theorem 2

Pr[C(n, q, s)] ≤ 1
ns−1

(
q

s

)
,

and

Pr[C(n, q, s)] ≥ 1
ns−1

(
q

s

)(
1− 1

n

)q−s {
1− 1

2(n− 1)s−1

(
q − s

s

)}
.

Proof. By Theorem 1 and Lemma 1(1), we obtain the upper bound

Pr[C(n, q, s)] =
1

ns−1

q∑
i=s

(
i− 1
s− 1

)(
1− 1

n

)i−s

(1 − Pr[C(n− 1, i− s, s)])

≤ 1
ns−1

q∑
i=s

(
i− 1
s− 1

)
=

1
ns−1

(
q

s

)
.

We have

Pr[C(n, q, s)] =
1

ns−1

q∑
i=s

(
i − 1

s − 1

)(
1 − 1

n

)i−s

(1 − Pr[C(n − 1, i − s, s)])

≥ 1

ns−1

(
1 − 1

n

)q−s q∑
i=s

(
i − 1

s − 1

)
(1 − Pr[C(n − 1, i − s, s)])

=
1

ns−1

(
1 − 1

n

)q−s
[

q∑
i=s

(
i − 1

s − 1

)
−

q∑
i=s

(
i − 1

s − 1

)
Pr[C(n − 1, i − s, s)]

]

=
1

ns−1

(
1 − 1

n

)q−s
[(

q

s

)
−

q∑
i=2s

(
i − 1

s − 1

)
Pr[C(n − 1, i − s, s)]

]
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where the last equality follows from the fact that Pr[C(n − 1, i− s, s)] = 0 for
i ≤ 2s− 1 and Lemma 1(1).

Now using the above upper bound, we derive the lower bound,

Pr[C(n, q, s)]≥ 1

ns−1

(
1 − 1

n

)q−s
[(

q

s

)
−

q∑
i=2s

(
i − 1

s − 1

)
1

(n − 1)s−1

(
i − s

s

)]

=
1

ns−1

(
1 − 1

n

)q−s
[(

q

s

)
− 1

(n − 1)s−1

q∑
i=2s

(
i − 1

s − 1

)(
i − s

s

)]
.

By Lemma 1(2),

=
1

ns−1

(
1− 1

n

)q−s
[(

q

s

)
− 1

(n− 1)s−1

(
2s− 1

s

) q∑
i=2s

(
i− 1
2s− 1

)]
.

By Lemma 1(1),

=
1

ns−1

(
1− 1

n

)q−s [(
q

s

)
− 1

(n− 1)s−1

(
2s− 1

s

)(
q

2s

)]
.

By Lemma 1(3),

=
1

ns−1

(
1− 1

n

)q−s [(
q

s

)
− 1

2(n− 1)s−1

(
q

s

)(
q − s

s

)]

=
1

ns−1

(
1− 1

n

)q−s (
q

s

){
1− 1

2(n− 1)s−1

(
q − s

s

)}
.

From now on, we use the following notation,

f(n) =
(

1− 1
n

)q−s

and g(n) =
1

2(n− 1)s−1

(
q − s

s

)
.

Theorem 2 can be rewritten as

f(n)(1 − g(n))
1

ns−1

(
q

s

)
≤ Pr[C(n, q, s)] ≤ 1

ns−1

(
q

s

)
. (1)

4 Bounds for q = Θ(nε) Where ε < (s − 1)/s

The graph in Figure 1 demonstrates the upper bound and the lower bound in
Theorem 2 and the exact probability of Pr[C(n, q, s)] for n = 365 and s = 3.
From this figure, we can see that for q < n(s−1)/s ≈ 52, the difference between
values of these three graphs is small. We will show that when q = nε with
ε < s−1

s , the upper bound and the lower bound are indeed very close to each
other. We also show that in this case, the upper bound asymptotically tends to
zero.
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Theorem 3. Let ε be a positive number such that ε < s−1
s . Then for any positive

number c < 1, there exists a positive number n0 such that

c× 1
ns−1

(
q

s

)
< Pr[C(n, q, s)] ≤ 1

ns−1

(
q

s

)
,

for any n > n0 and 2 ≤ s ≤ q = nε.

Proof. The theorem follows from the following two claims.
Claim 1.

g(n) <
1

2 s!
qs

ns−1
=

1
2 s! ns−1−sε

,

thus, g(n)→ 0 when n →∞.
Proof. We have(

q − s

s

)
=

(q − s)(q − s− 1) . . . (q − 2s + 1)
s!

<
(q − 1)s

s!
,

By Lemma 1(4),
(n− 1)s−1 > (n

s−1
s − 1)s.

Thus,

g(n) =
1

2(n− 1)s−1

(
q − s

s

)
<

1

2(n
s−1

s − 1)s

(q − 1)s

s!
=

1
2 s!

(
q − 1

n
s−1

s − 1

)s

By Lemma 1(5),

g(n) <
1

2 s!

(
q

n
s−1

s

)s

=
1

2 s!
qs

ns−1
=

1
2 s! ns−1−sε

.

Fig. 1. The upper bound and the lower bound of Theorem 2 and the exact probability
of Pr[C(n, q, s)] for n = 365 and s = 3. We use the recursive formula in Section 2 to
calculate the exact probability Pr[C(n, q, s)].
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Since s− 1− sε > 0, we have g(n)→ 0 when n →∞.
Claim 2. With the notation in Lemma 1(6), for any n > k,

f(n) > e
−q/n
k = e−nε−1

k ,

where ek ≈ e, thus, f(n)→ 1 when n→∞.
Proof. We have

f(n) =
(

1− 1
n

)q−s

>

(
1− 1

n

)q

=

[(
1− 1

n

)−n
]−q/n

= e−q/n
n .

Since n > k, by Lemma 1(6), en < ek, thus,

f(n) > e
−q/n
k = e−nε−1

k .

Since ε < 1, nε−1 → 0 and f(n)→ 1 as n →∞.
From Claim 1 and Claim 2, we have f(n)(1 − g(n)) → 1, thus, the theorem

follows.

Example. Let s = 4, ε = 1
2 < s−1

s = 3
4 , and n > 100 then

g(n) <
nsε−(s−1)

2 s!
=

n−1

48
<

1
4800

= 0.000208333,

f(n) > e−nε−1

100 = e−n−1/2

100 > e−100−1/2

100 =
[
(1− 1/100)−100

]−100−1/2

> .9

Thus f(n)(1− g(n)) > .8998, and we have

.8998× 1
ns−1

(
q

s

)
< Pr[C(n, q, s)] ≤ 1

ns−1

(
q

s

)
.

Even though Theorem 3 shows that the upper bound and the lower bound are
very closed to each other, the following lemma shows that these bounds asymp-
totically tend to zero.

Lemma 2. Let ε be a positive number such that ε < s−1
s and q = nε, then

1
ns−1

(
q

s

)
→ 0 when n →∞.

Proof. We have
1

ns−1

(
q

s

)
<

1
ns−1

qs

s!
=

1
s! ns−1−sε

.

Since s− 1− sε > 0, we have

1
ns−1

(
q

s

)
→ 0.
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5 Bounds for q = Θ(n(s−1)/s)

In this section, we consider the case q = Θ(n(s−1)/s). We prove two main the-
orems. Theorem 4 shows that if q ≈ n(s−1)/s and n is sufficiently large then
Pr[C(n, q, s)] ≈ 1/s!, and Theorem 5 shows that if q ≈ (s!)1/sn(s−1)/s and n is
sufficiently large then Pr[C(n, q, s)] � 1/2.

It implies the following generalized birthday paradox

For a hash function H : D → R with |R| = n, if n is sufficiently
large then by n(s−1)/s number of hashings, an s-collision can be found
with probability ≈ 1/s!, and by (s!)1/s n(s−1)/s number of hashings an
s-collision can be found with probability � 1/2.

Theorem 4. We suppose that q = α n(s−1)/s, q − s = α′ n(s−1)/s, where 0 <
α′ < α < 1. If 2 ≤ s ≤ q then

Pr[C(n, q, s)] ≤ 1
ns−1

(
q

s

)
<

αs

s!
<

1
s!

(2)

and

Pr[C(n, q, s)] >
α′s

s!
−

(
α′s+1 ln en

s! n1/s
+

(αα′)s

2(s!)2

)
where en = (1 − 1/n)−n ≈ e. In particular, if n is sufficiently large so that
1/n1/s ≈ 0, and α′ � α � 1, then we have

Pr[C(n, q, s)] >
α′s

s!
−

(
α′s+1 ln en

s! n1/s
+

(αα′)s

2(s!)2

)
≈ 1

s!
− 1

2(s!)2

Proof. We have

1
ns−1

(
q

s

)
=

1
ns−1

q(q − 1) . . . (q − s + 1)
s!

<
1

ns−1

qs

s!
=

αs

s!

thus

Pr[C(n, q, s)] ≤ 1
ns−1

(
q

s

)
<

αs

s!
<

1
s!

.

We have

1
ns−1

(
q

s

)
=

1
ns−1

q(q − 1) . . . (q − s + 1)
s!

>
1

ns−1

(q − s)s

s!
=

α′s

s!
.

As in the proof of Theorem 3, we have

g(n) <
1

2 s!
qs

ns−1
=

αs

2 s!
.

and by Lemma 1(6),

f(n) = e−(q−s)/n
n > 1− q − s

n
ln en = 1− α′ ln en

n1/s
.
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Thus,

f(n)(1− g(n)) ≥ f(n)− g(n) > 1− α′ ln en

n1/s
− αs

2 s!
.

Therefore,

Pr[C(n, q, s)] ≥ f(n)(1− g(n))
1

ns−1

(
q

s

)
>

(
1− α′ ln en

n1/s
− αs

2 s!

)
α′s

s!

=
α′s

s!
−

(
α′s+1 ln en

s! n1/s
+

(αα′)s

2(s!)2

)
.

Theorem 5. If 2 ≤ s ≤ q, and q = (s!)1/sn(s−1)/s + s− 1(< n), then we have

Pr[C(n, q, s)] >
1
2
−

(
s!
n

)1/s

ln en.

In particular, if n is sufficiently large so that (s!/n)1/s ≈ 0, then we have

Pr[C(n, q, s)] >
1
2
−

(
s!
n

)1/s

ln en ≈
1
2
. (3)

Proof. By Cauchy’s inequality,(
q − s

s

)
=

(q − s)(q − s− 1) . . . (q − 2s + 1)
s!

<
1
s!

(
(q − s) + (q − s− 1) + . . . + (q − 2s + 1)

s

)s

=
[q − (3s− 1)/2]s

s!
=

[(s!)1/s n(s−1)/s − (s + 1)/2]s

s!
= [n(s−1)/s − (s!)−1/s(s + 1)/2]s

By Lemma 1(7), (s!)−1/s(s + 1)/2 > 1, thus,(
q − s

s

)
< (n(s−1)/s − 1)s.

By Lemma 1(4),
(n− 1)s−1 > (n(s−1)/s − 1)s,

thus,

g(n) =
1

2(n− 1)s−1

(
q − s

s

)
<

1
2
. (4)

We have

f(n) =
(

1− 1
n

)q−s

>

(
1− 1

n

)q−s+1

= e−(q−s+1)/n
n ,
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thus, by Lemma 1(6),

f(n) > e−(q−s+1)/n
n > 1− q − s + 1

n
ln en = 1−

(
s!
n

)1/s

ln en. (5)

From (4) and (5), we have

f(n)(1− g(n)) ≥ f(n)− g(n) >
1
2
−

(
s!
n

)1/s

ln en. (6)

We have
1

ns−1

(
q

s

)
>

(q − s + 1)s

s! ns−1
=

((s!)1/sn(s−1)/s)s

s! ns−1
= 1. (7)

Combining (6) and (7) gives

Pr[C(n, q, s)] ≥ f(n)(1−g(n))
1

ns−1

(
q

s

)
>

1
2
−
(

s!
n

)1/s

ln en.

Example. If s ≥ 2, n > s! 32s(≥ 2048) and q = (s!)1/sn(s−1)/s + s − 1(< n)
then (

s!
n

)1/s

<
1
32

and ln e2048 < 1.00025,

thus

Pr[C(n, q, s)] >
1
2
− 1

32
× 1.00025 > .4687

6 Conclusion

In this paper, we have studied multi-collision probabilities for regular hash func-
tions H : D → R, where ”regular” means that each image y ∈ R has the same
number of preimages. Suppose that that |R| = n. Then our main results are
summarized as follows.

– By hashing about n(s−1)/s times, an s-collision is found with probability at
most 1/s! (see eq.(2)). Since it is very small for large s, this disproves the
folklore which has been believed so far.

– By hashing about (s!)1/sn(s−1)/s times, an s-collision is found with proba-
bility approximately 1/2 or more if n is large enough so that (s!/n)1/s ≈ 0
(see eq.(3)). Hence this is a true generalization of the birthday paradox to
multicollisions.

Bellare and Kohno genralized the birthday paradox (for s = 2) to non-regular
hash functions [2]. It will be a furter work to generalize our result on multicolli-
sion to non-regular hash functions.
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Appendix: Proofs of Lemma 1

Proof. (1) Since (
i

s

)
=

(
i− 1

s

)
+

(
i− 1
s− 1

)
,

we have
q∑

i=s

(
i − 1

s − 1

)
=1+

q∑
i=s+1

(
i − 1

s − 1

)
=1+

q∑
i=s+1

[(
i

s

)
−

(
i − 1

s

)]
=1+

(
q

s

)
−
(

s

s

)
=

(
q

s

)
.

(2) We have(
i− 1

ks− 1

)(
i− ks

s

)
=

(i− 1)!
(ks− 1)!(i− ks)!

× (i− ks)!
s!(i− (k + 1)s)!

=
((k + 1)s− 1)!

s!(ks− 1)!
× (i− 1)!

((k + 1)s− 1)!(i− (k + 1)s)!

=
(

(k + 1)s− 1
s

)(
i− 1

(k + 1)s− 1

)
.

(3) We have(
ks− 1

s

)(
q

ks

)
=

(ks− 1)!
s!((k − 1)s− 1)!

× q!
(ks)!(q − ks)!
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=
q!

(ks) s! ((k − 1)s− 1)! (q − ks)!

=
k − 1

k
× q!

s!(q − s)!
× (q − s)!

((k − 1)s)!(q − ks)!

=
k − 1

k

(
q

s

)(
q − s

(k − 1)s

)
.

(4) Let 0 < t = s−1
s < 1 and consider the function a(n) = (n− 1)t − nt + 1.

We have a′(n) = t[(n − 1)t−1 − nt−1] > 0. Thus, a(n) ≥ a(2) = 2 − 2t > 0.
Therefore,

(n− 1)
s−1

s > n
s−1

s − 1,

and thus,
(n− 1)s−1 > (n

s−1
s − 1)s.

(5) We have

a− 1
b− 1

≤ a

b
↔ b(a− 1) ≤ a(b− 1)↔ a ≤ b.

(6) It is a basic result that the sequence {ek}∞k=2 is a decreasing sequence,
ek > e, and limk→∞ ek = e, the proof of this result can be found in any calculus
textbook. We have

e−x > 1− x,

thus,

e−x
k = (e−x)ln ek > (1− x)ln ek , and by Bernoulli’s inequality,

> 1− x ln ek.

(7) By Cauchy’s inequality,

s! <

(
1 + 2 + . . . + s

s

)s

=
(

s + 1
2

)s

,

thus, (s + 1)/2 > (s!)1/s. It follows that (s!)−1/s (s + 1)/2 > 1.
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Abstract. We propose a variant of the self-shrinking generator, which is
constructed using an extended selection rule. This new generator is called
SSG-XOR since the selection rule is determined by the XORed value of a
couple of bits. It is shown that the period and the linear complexity of an
output sequence of SSG-XOR are better than those of the self-shrinking
generator. It is also shown that the SSG-XOR generator has meaningful
advantages from the viewpoint of practical cryptanalysis.

1 Introduction

The shrinking generator [2] and the self-shrinking generator [7] are attractive
since they have very simple structures and good cryptographic properties. These
features of the shrinking and the self-shrinking generators make them suitable
for use in light-weight and low-cost stream ciphers. So it is worthwhile to exam-
ine cryptographic properties of these generators. As for the shrinking generator,
Coppersmith, Krawczyk and Mansour [2] have shown that the period and the
linear complexity of output sequences are exponential in the length of the linear
feedback shift registers (LFSRs) which constitute the generator, and that these
sequences have some nice distributional statistics. On the other hand, Meier and
Staffelbach [7] have analyzed the period and the linear complexity of output se-
quences of self-shrinking generator. Although they proved only the lower bounds
on period and linear complexity, they showed that the real values obtained from
their experiments are sufficiently large.

The self-shrinking generator, which uses only one LFSR, has a simpler struc-
ture than the shrinking generator, which requires two LFSRs. Also, it is known
that the self-shrinking generator is even more resistant to cryptanalysis than
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the shrinking generator. Thus the self-shrinking generator is more attractive for
light-weight and low-cost implementations of stream ciphers.

In this paper we present a variant of the self-shrinking generator which will
be called the self-shrinking generator with XOR, or briefly SSG-XOR. Then we
show that SSG-XOR has better cryptographic properties than the self-shrinking
generator in a practical setting, while it can be implemented with the efficiency
similar to the self-shrinking generator. Specifically, we show that an output se-
quence of SSG-XOR is balanced and the period and the linear complexity of this
sequence are twice longer than those of the self-shrinking generator. Also, it is
shown that SSG-XOR is more secure than the self-shrinking generator against
various previous known attacks using short known keystream sequences.

The remainder of this paper is organized as follows. In Section 2, we describe
our new keystream generator, SSG-XOR. In Sections 3 and 4, we analyze the
period and the linear complexity of SSG-XOR, respectively. Then we examine
possible attacks on SSG-XOR in Section 5. Finally, we provide some concluding
remarks in Section 6.

2 Extended Self-Shrinking Generator Using XOR

The shrinking generator (SG) is a well-known keystream generator proposed by
Coppersmith, Krawczyk and Mansour [2]. Later, Meier and Staffelbach [7] pro-
posed a modified version of shrinking generator called the self-shrinking genera-
tor (SSG). Let A and S be maximum length LFSRs generating the m-sequence
(ai)i≥0 and (si)i≥0, respectively. For each clock i, SG outputs ai if si = 1. Oth-
erwise, it discards ai. On the other hand, SSG consists of only one LFSR A. For
any bit pair (a2i, a2i+1), SSG outputs a2i+1 if a2i = 1. Otherwise, it discards
a2i+1.

SSG has many features similar to SG. Meier and Staffelbach [7] have shown
that SSG can be implemented using an SG with two LFSRs having identical
feedback connections and SG can be implemented as a special case of SSG. Al-
though SSG is closely related to SG, it has better cryptographic properties than
SG. First, the keystreams of SSG are balanced, while those of SG are not. Next,
SSG is more secure than SG against various known attacks as follows. Recently,
Simpson, Golić and Dawson [9] and Golić [4] showed that SG is not secure against
the probabilistic correlation attack, and Ekdahl, Meier and Johansson [3] pro-
posed a practical distinguishing attack on SG. However, SSG has not revealed
any weakness for these attacks yet. For the present, the most efficient attack
against SSG for a known short keystream is the BDD-based attack [5], which
requires nO(1)20.6563n computational steps for an m-LFSR of length n.

In this paper, we propose a new keystream generator called SSG-XOR, which
is an extension of SSG. SSG-XOR consists of only one LFSR and its struc-
ture is as follows. Let ã = (ai)i≥0 be an output sequence of a non-trivially
initialized m-LFSR of length n. Consider the sequence ã = (ai)i≥0 as a se-
quence of 4-tuples of bits ((a0, a1, a2, a3), (a4, a5, a6, a7), . . .). For each 4-tuple
(a4i, a4i+1, a4i+2, a4i+3), SSG-XOR outputs two bits a4i+2 and a4i+3
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if a4i ⊕ a4i+1 = 1, and discard a4i+2 and a4i+3 otherwise. The close relationship
between SSG and SSG-XOR is shown in figure 1.

< SSG−XOR >< SSG >

...LFSR LFSR ...

yes

output

a2i+1

a2i

a2i = 1 ? no

yes

output output
a2i+1 nothing

=1? no

output
nothing

4i+3a

a4i , a4i+1

4i+2a

4i+3

,

aa4i+2

a4i 4i+1a

Fig. 1. SSG and SSG-XOR

Note that SSG requires four clocks to generate one bit of output stream on
the average, while SSG-XOR requires eight clocks to generate two bits of out-
put stream. Thus, SSG and SSG-XOR have the similar efficiency. However it
will be shown in Sections 3 through 5 that SSG-XOR has better cryptographic
properties than SSG.

3 Period of SSG-XOR

Let ã = (ai)i≥0 be an output sequence of a non-trivially initialized m-LFSR of
length n. We can deduce the following proposition from Proposition 1 in [7].

Proposition 1. Let ã be an m-sequence generated by an LFSR of length n and
let s̃ be the output sequence of SSG-XOR obtained from ã. Then s̃ is a balanced
sequence and the period of s̃ divides 2n.

Proof. This argument can be straightforwardly obtained from the proof of
Proposition 1 in [7]. �

In order to obtain a lower bound on period of SSG-XOR, we need some properties
of the trace map. For α ∈ GF (2m), the trace of α over GF (2) is defined by
Tr(α) = TrGF (2m)/GF (2)(α) =

∑m−1
i=0 α2i

. Note that the trace map is linear,
that is, Tr(α + β) = Tr(α) + Tr(β) for all α, β ∈ GF (2m). The following
theorem provides a convenient method representing the output sequence of an
LFSR.

Proposition 2. ([6], Theorem 6. 24) Let ã = (ai)i≥0 be an m-sequence gen-
erated by an LFSR of length n. Then there exists a non-zero element c ∈ GF (2n)
and a primitive element β ∈ GF (2n) such that ai = Tr(cβi) for all non-negative
integer i.
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Let ã and b̃ be the sequences generated by the same LFSR of length n. If the
LFSR is non-singular, ã and b̃ are called equivalent. If ã and b̃ are equivalent,
b̃ is a t-th shift sequence of ã for some t. Let a sequence ã(2) be defined by
ã(2) = (a2i)i≥0. Then, we obtain the following lemma.

Lemma 1. Let ã = (ai)i≥0 be an m-sequence generated by an LFSR of length
n. Then ã(2) and ã are equivalent.

Proof. By Proposition 2, there exist c ∈ GF (2n) and a primitive element β ∈
GF (2n) such that ai = Tr(cβi) for all i. Therefore, ã(2) is represented by
(Tr(c), T r(cβ2), T r(cβ4), . . .) = (Tr(c), T r(c(β2)), T r(c(β2)2), . . .). Let f(x) be
the primitive polynomial of β of degree n. Since f(β2) = f(β)2 = 0, f(x) is also
the minimal polynomial of β2. That is, ã(2) and ã are sequences generated by
the same LFSR. Thus ã(2) and ã are equivalent. �
Let PSSG and PSSG−XOR be the periods of SSG and SSG-XOR, respectively.
Let s̃ = (si)i≥0 be the output sequence of SSG-XOR obtained from ã. Consider
a sequence s̃+ defined by (s0 ⊕ s1, s2 ⊕ s3, . . .).

Theorem 1. Let ã = (ai)i≥0 be an m-sequence generated by an LFSR of length
n. Then, the output sequence of SSG is equivalent to s̃+. Thus

2 · PSSG ≤ PSSG−XOR .

Proof. By Proposition 2, there exist c ∈ GF (2n) and a primitive element β ∈
GF (2n) such that ai = Tr(cβi) for all i. Consider a sequence ã+ defined by (a0⊕
a1, a2⊕ a3, . . .) . Since β is a primitive element of GF (2n), for each i, we obtain
a2i⊕a2i+1 = Tr(cβ2i)+Tr(cβ2i+1)= Tr(c(β2i+β2i+1))= Tr(cβk) = ak for some
k. Similarly, a2i+2⊕a2i+3= Tr(cβk+2) = ak+2. That is, ã+= (ad, ad+2, ad+4, . . .)
for some d. By Lemma 1, sequences ã+ and ã are equivalent.

Now, consider the output sequence s̃ of SSG-XOR. s̃ is generated from ã
by the following rule: If a4i ⊕ a4i+1 = 1, (s2j , s2j+1) = (a4i+2, a4i+3) for some
j. Otherwise, a4i+2 and a4i+3 are discarded. On the other hand, s̃+ can be
generated from ã+ by the following rule: If a4i⊕a4i+1 = 1, output a4i+2⊕a4i+3.
Otherwise, a4i+2 ⊕ a4i+3 is discarded. Note that since sequences ã+ and ã are
equivalent, a4i⊕a4i+1 = ae and a4i+2⊕a4i+3 = ae+1 for some e. In other words,
the generation rule of s̃+ is that if ae = 1 then the generator outputs ae+1. This
means that the output sequence of SSG and s̃+ are equivalent. From this fact,
we can easily see that 2 · PSSG ≤ PSSG−XOR. �
By Proposition 1 and Theorem 1, we know that 2 · PSSG ≤ PSSG−XOR and
PSSG−XOR divides 2n. Meier and Staffelbach [7] investigated the period of self-
shrunken m-sequences generated by all possible LFSRs of length n < 20. As a
result, they showed that the output sequences of SSG for all m-LFSR of length
n < 20 except only one case, have maximum period 2n−1. The case that does
not reach the maximum period is the m-LFSR of length n = 3 defined by the
recursion an = an−2 ⊕ an−3 and its period is 2 instead of the maximum period
23−1 = 4. In this case, the output sequence of SSG-XOR has the period 4 instead
of maximum period 23 = 8. Theorem 1 implies that the output sequences of
SSG-XOR for all remaining cases have maximum period 2n.
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4 Linear Complexity of SSG-XOR

The linear complexity of a purely periodic sequence is defined to be the degree
of the minimal polynomial m(x) of the sequence. In other words, the linear
complexity Lã of ã is the length of the shortest LFSR which generates that
sequence. Let P be the period of the sequence ã. Then we know that m(x)
divides xP − 1 . Let LSSG and LSSG−XOR be the linear complexities of SSG
and SSG-XOR, respectively. Recall that PSSG divides 2n−1 (Proposition 1 in
[7]) and PSSG−XOR divides 2n (Proposition 1). Let m1(x) and m2(x) be the
minimal polynomials of output sequences of SSG and SSG-XOR, respectively.
Since PSSG divides 2n−1, m1(x) | xPSSG − 1= (x + 1)PSSG over GF (2). Thus,
m1(x) = (x + 1)LSSG. Similarly, m2(x) = (x + 1)LSSG−XOR .

Lemma 2. Let t be odd and g(x) = (x + 1)t =
∑t

i=0

(
t
i

)
xi over GF (2). Then,

for 0 ≤ m ≤ (t− 1)/2,
(

t
2m+1

)
=

(
t

2m

)
over GF (2).

Proof. Since
(

t
2m+1

)
=

(
t

2m

)
t−2m
2m+1 and t − 2m is odd, we obtain that

(
t

2m+1

)
≡(

t
2m

)
mod 2. �

Theorem 2. The linear complexity LSSG−XOR of SSG-XOR satisfies

2 · LSSG ≤ LSSG−XOR ,

where LSSG is the linear complexity of SSG.

Proof. Let LSSG−XOR = L. Let (s0, s1, s2, . . . , sL−1) be the initial state of the
shortest LFSR that generates an output sequence of SSG-XOR and m2(x) be
its minimal polynomial. We first consider the case that L is even. Let L = 2l.
We have m2(x) = (x + 1)2l =

∑2l
i=0 tix

i over GF (2), where ti = 0 if i is odd.
Then m2(x) can be rewritten as

m2(x) = 1 + x2i1 + x2i2 + · · ·+ x2ik + x2l ,

where 0 < i1 < i2 < · · · < ik < l. Now consider the sequence (s2l, s2l+1,
s2l+2, s2l+3, . . .) generated by the initial state (s0, s1, s2, . . . , s2l−1) and m2(x).
We have

s2l = s0 ⊕ s2l−2ik
⊕ s2l−2ik−1 ⊕ · · · ⊕ s2l−2i1 ,

s2l+1 = s1 ⊕ s2l−2ik+1 ⊕ s2l−2ik−1+1 ⊕ · · · ⊕ s2l−2i1+1 .

Similarly,

s2l+2j = s2j ⊕ s2l−2ik+2j ⊕ s2l−2ik−1+2j ⊕ · · · ⊕ s2l−2i1+2j ,

s2l+2j+1 = s2j+1 ⊕ s2l−2ik+2j+1 ⊕ s2l−2ik−1+2j+1 ⊕ · · · ⊕ s2l−2i1+2j+1 .

Then, we obtain

s2l ⊕ s2l+1 = (s0 ⊕ s1)⊕ (s2l−2ik
⊕ s2l−2ik+1)⊕ · · · ⊕ (s2l−2i1 ⊕ s2l−2i1+1)
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and

s2l+2j ⊕ s2l+2j+1 = (s2j ⊕ s2j+1)⊕ (s2l−2ik+2j ⊕ s2l−2ik+2j+1)
⊕ · · · ⊕ (s2l−2i1+2j ⊕ s2l−2i1+2j+1) . (1)

Therefore, sequence (s2l⊕s2l+1, s2l+2⊕s2l+3, . . .) is generated by the initial state
(s0 ⊕ s1, s2 ⊕ s3, . . . , s2l−2 ⊕ s2l−1) and linear recurrence (1). By Theorem 1, we
can see that (s2l ⊕ s2l+1, s2l+2 ⊕ s2l+3, . . .) is equivalent to the output sequence
of SSG. Thus, LSSG ≤ l. This means that 2 · LSSG ≤ LSSG−XOR.

Next we consider the case that L is odd. Let L = 2l+1. By Lemma 2, we have
m2(x) = (x + 1)2l+1=

∑2l+1
i=0 tix

i over GF (2), where t2i = t2i+1 for 0 ≤ i ≤ l
and t0 = t2l = 1. Then m2(x) can be rewritten as

m2(x) = 1 + x + x2i1 + x2i1+1 + x2i2 + x2i2+1 + · · ·+ x2ik + x2ik+1

+x2l + x2l+1 ,

where 0 < i1 < i2 · · · < ik < l. Now we can compute the sequence (s2l+1, s2l+2,
s2l+3, s2l+4, . . .) as follows:

s2l+1 = s0 ⊕ s1 ⊕ s2l−2ik
⊕ s2l−2ik+1 ⊕ s2l−2ik−1 ⊕ s2l−2ik−1+1

⊕ · · · ⊕ s2l−2i1 ⊕ s2l−2i1+1 ⊕ s2l ,

s2l+2 = s1 ⊕ s2 ⊕ s2l−2ik+1 ⊕ s2l−2ik+2 ⊕ s2l−2ik−1+1 ⊕ s2l−2ik−1+2

⊕ · · · ⊕ s2l−2i1+1 ⊕ s2l−2i1+2 ⊕ s2l+1 . (2)

Moving s2l+1 from the right-hand side to the left-hand side in (2), we obtain

s2l+1 ⊕ s2l+2 = (s1 ⊕ s2)⊕ (s2l−2ik+1 ⊕ s2l−2ik+2)⊕ · · · ⊕ (s2l−2i1+1

⊕s2l−2i1+2) .

Similarly,

s2l+2j+1 ⊕ s2l+2j+2 = (s2j+1 ⊕ s2j+2)⊕ (s2l−2ik+2j+1 ⊕ s2l−2ik+2j+2)
⊕ · · · ⊕ (s2l−2i1+2j+1 ⊕ s2l−2i1+2j+2) . (3)

Therefore, sequence (s2l+1⊕s2l+2, s2l+3⊕s2l+4, . . .) is generated by the initial
state (s1⊕s2, s3⊕s4, . . . , s2l−1⊕s2l) and the linear recurrence (3). By a technique
similar to the case L = 2l, we can obtain that 2 · LSSG + 1 ≤ LSSG−XOR. �

Meier and Staffelbach [7] presented experimental results which show that the
upper bound on the linear complexity of an output sequence of SSG is 2n−1 −
(n−2). This was proved later by Blackburn [1]. Hence, we can see by Theorem 2
that the upper bound on LSSG−XOR is at least 2n − 2(n− 2).

Table 1 shows the measured values of the linear complexities for output se-
quences of SSG and SSG-XOR generated by all m-LFSR sequences of length
n ≤ 15. By this table, we can see that all the output sequences of SSG-XOR
with n ≤ 15 have linear complexity near to 2n − 2(n− 2).
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Table 1. Ranges of linear complexities (LCs) for SSG and SSG-XOR with n ≤ 15

n # of m-LFSRs 2n − 2(n − 2) LC of SSG LC of SSG-XOR

2 1 4 2 4
3 2 6 2–3 4–6
4 2 12 5 10–11
5 6 26 10–13 25–26
6 6 56 25–28 53–56
7 18 118 54–59 115–118
8 16 244 118–122 237–244
9 48 498 243–249 491–498
10 60 1008 498–504 1002–1008
11 176 2030 1009–1015 2023–2030
12 144 4076 2031–2038 4069–4076
13 630 8170 4072–4085 8164–8170
14 756 16360 8170–8180 16349–16360
15 1800 32742 16362–16371 32729–32742

5 Cryptanalysis

In this section we examine some possible attacks on SSG-XOR. First, we try to
use known cryptanalytic techniques against SSG to break SSG-XOR. This ap-
proach is natural since SSG-XOR and SSG have close relation. Then we consider
another attack suitable for SSG-XOR.

It is easy to see that in general, an algorithm that attacks SSG using l con-
secutive output bits can be modified to attack SSG-XOR using 2l consecutive
output bits, according to Theorem 1. From now, we will try to modify other
well-known cryptanalytic techniques against SSG to ones against SSG-XOR in a
non-straightforward manner. In these attacks, we will assume that the attacker
knows the feedback polynomial of the underlying LFSR.

Exhaustive search and entropy attack. Meier and Staffelbach [7] proposed
two general methods in order to reconstruct the initial state of the internal LFSR
from a known output sequence of SSG. These attacks operate on short keystream
sequences, requiring O(20.79n) and O(20.75n) computational steps, respectively.

Now we apply these methods to SSG-XOR. The first method is an exhaustive
search. Assume that (s0, s1, s2, s3, . . .) is the known output sequence generated
by SSG-XOR. Let (a0, a1, a2, a3) be the first four bits of LFSR. Without loss
of generality, we can assume (a0, a1, a2, a3) = (a0, a1, s0, s1). Then there are
two possible cases, i.e., (a0, a1) = (1, 0) or (a0, a1) = (0, 1). For the next four
bits (a4, a5, a6, a7), there exist ten possibilities, i.e., two cases (a4, a5, a6, a7) =
(1, 0, s2, s3), (a4, a5, a6, a7) = (0, 1, s2, s3), and other eight cases for (a4, a5) =
(0, 0) or (a4, a5) = (1, 1), where (a6, a7) is discarded. This manipulation can be
repeated for all subsequent 4-bit blocks of ã. Since there are n/4 blocks in total,
there exist

S = 2 · 10(n−1)/4 ≈ 10n/4 = 2((log2 10)/4)n = 20.8305n
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possible initial states of the LFSR producing the known short sequence
(s0, s1, s2, s3, . . .).

The second reconstruction algorithm using a short keystream sequence is to
use the total entropy about the blocks. However, we can see easily that the
average complexity of the algorithm using the entropy is much greater than
O(20.8305n). Thus, SSG-XOR is more secure than SSG from the viewpoint of
cryptanalysis proposed by [7].

BDD-based attack. Note that there are a few powerful attacks such as the
backtracking-based attack [10] and the BDD-based attack [5]. Now we examine
the BDD-based attack introduced by Krause [5], which is the best previously
known short keystream attack against SSG. It computes the secret initial state
from the first �2.41n� output bits in time nO(1)20.6563n. (Although there is an-
other fast attack using a tradeoff between time and length of available keystream,
it requires unrealistic amount of keystream bits to achieve the time complexity
comparable to the BDD-based attack [8].) Now, we will apply the BDD-based
attack to SSG-XOR.

First, we explain the BDD-based attack briefly. A BDD (Binary Decision
Diagram) is an efficient data structure to decide if a set of Boolean variables
satisfy a Boolean equation. In the BDD-based attack, an attacker constructs
a BDD which decides if a candidate initial state produces the given output
sequence with the given generator. The attacker can find all candidate initial
states using another efficient algorithm SAT which enumerates all candidates
for a BDD. Note that there is only one candidate if a sufficiently long output
sequence is available. According to the analysis given in [5], the required length
of consecutive output bits is �γα−1n� and the time complexity is nO(1)2

1−α
1+α n,

where α and γ are defined as follows:

– α is the information rate (per bit) which an output stream s̃ = shrink(ã)
reveals about the internal LFSR bitstream ã.

– γ is the maximal ratio of the length of an output bitstream s̃ to the length
of corresponding internal LFSR bitstream ã.

For SSG, α ≈ 0.2075 and γ = 0.5.
We can apply the BDD-based attack to SSG-XOR too, since SSG-XOR satis-

fies the same conditions which were required for the BDD-based attack against
SSG, i.e., the BDD assumption and the pseudorandomness assumption. Now,
we use a similar manipulation to that of [5] to estimate the parameters α and γ
for the attack.

As in [5], we assume that for a fixed m the probability that shrink(z) is a
prefix of s̃ for a randomly chosen and uniformly distributed z ∈ {0, 1}m is the
same for any output stream s̃. Let us denote this probability by p(m). Then
there are p(m)2m possible z’s such that shrink(z) is a prefix of s̃, since there
are exactly 2m z’s with length m. Note that p(m) can be supposed to behave as
p(m) = 2−αm by the definition of information rate α given in [5]. Thus, we get
p(m)2m = 2(1−α)m.
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On the other hand, we observe that for all m with m ≡ 0 mod 4 and all
output streams s̃, shrink(z) is a prefix of s̃ for exactly 10m/4 strings z of length
m. Hence, we obtain an information rate α = 1− (log2 10)/4 ≈ 0.1695 for SSG-
XOR by evaluating the relation 2(1−α)m = 10m/4. Note that γ for SSG-XOR is
the same as that of SSG. Thus, we set γ = 0.5 for SSG-XOR.

Using the estimated values for α and γ, we see that the BDD-based attack
can reconstruct the secret initial state from the �2.95n� consecutive output bits
in time nO(1)20.7101n. Note that the required length of output bits and the time
complexity are increased. Therefore we conclude that SSG-XOR is more secure
than SSG against the BDD-based attack.

Long-sequence attacks for SSG-XOR. If an attacker has a sufficiently long
output sequence of SSG-XOR, then he or she can reduce the time complexity of
attack significantly. One possible attack works as follows.

Let (ai, ai+1, ai+2, ai+3) be four consecutive bits of the underlying LFSR for
SSG-XOR. If ai ⊕ ai+1 = 1, then ai+2 = sj and ai+3 = sj+1 for some j.
This produces three linear equations if sj and sj+1 is known. Applying this fact
repeatedly, we easily see that if an i is found such that

ai ⊕ ai+1 = ai+4 ⊕ ai+5 = · · · = ai+4∗(n/3−1) ⊕ ai+4∗(n/3−1)+1 = 1, (4)

then n linear equations for the LFSR sequence are generated when the corre-
sponding sequence bits sj , . . . are known, This is sufficient to reconstruct the
secret initial state. Since the probability for (4) is 1/2n/3, the attacker can ex-
pect one success out of 2n/3 trials on different segments of the output sequence
of SSG-XOR.

The complexity of the above attack is O(n32n/3) if we use a simple algorithm
to solve a system of n linear equations for every trial. On the other hand, it
is easy to see that the complexity of this kind of attack against SSG will be
O(n32n/2). Hence SSG-XOR seems weaker than SSG from the viewpoint of the
above attack, and moreover, this attack is better than any other known attacks
against SSG and SSG-XOR described in this section. However, the problem is
that the attacker has to know approximately 2n/3 and 2n/2 different segments of
the output sequence to attack SSG-XOR and SSG, respectively. Therefore, we
conclude that this kind of attack is impractical.

6 Conclusion

In this paper we proposed a variant of SSG constructed by using an extended
selection rule, and examined cryptographic properties of this generator. This
new generator is called SSG-XOR since the selection rule is determined by the
XORed value of a couple of bits. We have proved that the period and the linear
complexity of an output sequence of SSG-XOR are twice longer than those of
SSG. Also we have shown that SSG-XOR is more secure than SSG against known
previous attacks. While there is a new kind of attack that performs much better
for SSG-XOR than for SSG, it seems impractical because the required amount of
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known output sequence is too much. Since SSG-XOR can be implemented with
the efficiency similar to SSG, SSG-XOR can be seen as an improved version of
SSG from the viewpoint of security.
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9. L. Simpson, J. D. Golić, and E. Dawson, “A probablistic correlation attack
on the shrinking generator,” Information Security and Privacy-ACISP ’98, LNCS
1438, pp. 147–158, 1998.

10. E. Zenner, M. Krause, and S. Lucks, “Improved cryptanalysis of the self-shrinking
generator,” Information Security and Privacy-ACISP 2001, LNCS 2119, pp. 21–35,
2001.



On Constructing of a 32 × 32 Binary Matrix as a

Diffusion Layer for a 256-Bit Block Cipher�

Bon Wook Koo, Hwan Seok Jang, and Jung Hwan Song

CAMP Lab., Hanyang University
17 Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea

{kidkoo, jhs1003, camp123}@hanyang.ac.kr
http://math.hanyang.ac.kr/camp/

Abstract. In this paper, we describe how to construct a 32× 32 binary
matrix of branch number 10, and use some mathematical techniques to
find a form in product of matrices for increasing efficiency in software
implementations of the binary matrix. We estimate a security against
cryptanlysis when the binary matrix is used as a diffusion layer of a
256-bit SPN block cipher with an 8-bit s-box as a substitution layer in a
round function. Also we describe the cryptanalytic properties such as the
resistances to differential, linear, impossible differential, and truncated
differential cryptanalysis. The number of operations to be required for
implementing the binary matrix as a diffusion layer of a 256-bit SPN
block cipher are given in this paper. We have a result that the binary
matrix A is more efficient than the diffusion layer used Rijndael-256 on
low bit platforms, such as 8-bit processors.

Keywords: Block cipher, diffusion layer, binary matrix, SPN.

1 Introduction

Diffusion layer is one of core components for a block cipher with confusion layer
and the choice of a diffusion layer is an important factor on the security and
efficiency of the cipher.

Most of diffusion layers that have been introduced are linear transformations
on the vector space GF (2m)n for mn-bit, which imply that they have matrix rep-
resentations over GF (2m). The following 16× 16 linear transformation(Table 1)
is a matrix representation of diffusion layer of Rijndael-128.

Another widely used diffusion layer is linear transformation over GF (2), so-
called binary matrix. It has some advantages of implementing in bitwise opera-
tions. It gives relatively high diffusion effects without using any multiplication
and it has a simple representation in 0, 1-matrix form which is a binary matrix.

Some binary matrices are used as diffusion layers of block ciphers, such as in
E2, Camellia, and ARIA. Block cipher E2 is a 12-round Feistel networks with
an SPN round function using an 8× 8 binary matrix whose branch number is 5.
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Table 1. The matrix representation of the diffusion layer of Rijndael-128

02 00 00 00 00 00 00 03 00 00 01 00 00 00 01 00
00 02 00 00 03 00 00 00 00 00 00 01 00 00 00 01
00 00 02 00 00 03 00 00 01 00 00 00 00 01 00 00
00 00 00 02 00 00 03 00 00 01 00 00 01 00 00 00
01 00 00 00 00 00 00 02 00 00 03 00 00 00 01 00
00 01 00 00 02 00 00 00 00 00 00 03 00 00 00 01
00 00 01 00 00 02 00 00 03 00 00 00 00 01 00 00
00 00 00 01 00 00 02 00 00 03 00 00 01 00 00 00
01 00 00 00 00 00 00 01 00 00 02 00 00 00 03 00
00 01 00 00 01 00 00 00 00 00 00 02 00 00 00 03
00 00 01 00 00 01 00 00 02 00 00 00 00 03 00 00
00 00 00 01 00 00 01 00 00 02 00 00 03 00 00 00
03 00 00 00 00 00 00 01 00 00 01 00 00 00 02 00
00 03 00 00 01 00 00 00 00 00 00 01 00 00 00 02
00 00 03 00 00 01 00 00 01 00 00 00 00 02 00 00
00 00 00 03 00 00 01 00 00 01 00 00 02 00 00 00

Camellia which is a modification of E2 uses a binary matrix similar to the one
of E2.

In WISA 2003, mathematical techniques for efficient implementation of a bi-
nary matrix in 32-bit software environments has been introduced [1]. In ICISC
2003, Daesung Kwon et al. proposed a 128-bit block cipher ARIA [2] which used
a 16 × 16 binary matrix of the maximum branch number 8. ARIA has been
published in 2003 and established by KS(Korean Industrial Standards) in 2004.
ARIA is an involutional SPN structure with the following 16 × 16 binary ma-
trix(Table 2). The binary matrix in [1] and [2] has advantages to be implemented
in 8-bit environments [1, 2, 13].

Since encryption and decryption of big size of input/output blocks imply
more computation and space complexities, attacking such a block cipher of big
size of input/output is more difficult to succeed in practice. Generally, a block
cipher of big size of input/output is resisting against time and memory trade-off
attacks, but not always. Since computing power is growing up and storage cost is
getting down, attacking a cipher is getting fast to succeed. Therefore, we discuss
a cryptographic component which is a binary matrix as a diffusion layer for a
256-bit input/output block cipher in this paper.

The diffusion layer of Rijndael-256 can be represented by 32×32 linear trans-
formation over GF (28). We find a binary matrix that is more efficient than a
linear transformation over GF (28) for implementing into 8-bit processor envi-
ronments. We introduce a 32 × 32 binary matrix and will compare with the
diffusion layer of Rijndael-256.

Notice that 32× 32 binary matrix which we find is of branch number 10 that
is not the maximum. We have found many binary matrices of branch number 12
regarded as the maximum, but there are some disadvantages to implement those
matrices compared with other block ciphers in number of operations per round.
Most of cases, it seems that the bigger branch number of the diffusion layer
indicates that more computations are required for implementing the diffusion
layer. So, we focus on a binary matrix of branch number 10 instead of a binary
matrix of branch number 12.
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Table 2. The binary matrix used in the block cipher ARIA

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

In this paper, we describe how to construct such a 32 × 32 binary matrix
of branch number 10, and use some mathematical techniques to find a form in
product of matrices for increasing efficiency in software implementations. We
estimate a security against cryptanlysis when the binary matrix is used as a dif-
fusion layer of a 256-bit SPN block cipher with an 8-bit s-box as a substitution
layer in a round function. Also we describe the cryptanalytic properties such as
the resistance against differential [4], linear [5], impossible differential [6], and
truncated differential [7] cryptanalysis for a 256-bit SPN block cipher. By count-
ing the number of operations to be required for implementing round functions,
the 12-round 256-bit SPN using the binary matrix and Rijndael-256 have been
considered. And we conclude that the 12-round 256-bit SPN is more efficient
than Rijndael-256 on low bit platforms.

2 Preliminaries

Throughout this paper, we consider the SPN with the round function shown as
in Fig. 1. And let si be m×m bijective s-boxes(Later, we let m = 8).

Round keys that xored with data bits are derived from a master key by a key
schedule algorithm which is not considered in this paper. We assume the round
keys are independent and uniformly random, key addition layer does not effect
on the number of active s-box.

We use the following definitions in this paper [3, 8].

Definition 1. For any given Δx, Δy, Γx, Γy ∈ Zm
2 , the differential and linear

probabilities of each s-box si are defined as :

DP si(Δx → Δy) =
#{x ∈ Zm

2 |si(x) ⊕ si(x ⊕Δx) = Δy}
2m

LP si(Γy → Γx) =
(

2× #{x ∈ Zm
2 |x · Γx = si(x) · Γy}

2m
− 1

)2

.
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Key Addition Layer
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� �
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sn

S-box Layer

Fig. 1. A round function of an SPN structure

Definition 2. The maximum differential and linear probabilities of s-boxes are
defined as:

ps = max
i

max
Δx �=0,Δy

DP si(Δx → Δy)

qs = max
i

max
Γx,Γy �=0

LP si(Γy → Γx)

This means that ps, qs are the upper bounds of the maximum differential and
linear probabilities for all s-boxes.

Definition 3. An s-box is a differential or linear active s-box if input difference
or output mask value of the s-box is nonzero.

Definition 4. Let all s-boxes be bijective. The minimum numbers of differential
s-boxes nd and linear active s-boxes nl in consecutive 2-round SPN for DC and
LC are defined as

nd = min
Δx �=0

[wH(Δx) + wH(A(Δx))]

nl = min
ΓA(x) �=0

[wH(Γx) + wH(A(Γx))],

where A is a diffusion layer and wH(x) is the hamming weight of n dimen-
sional vector x which is the number of nonzero sub-blocks over GF (2m) of x; i.e.
wH(x) = #{i|0 ≤ i < n, xi �= 0}.

Definition 5. The branch number BA of a diffusion layer A is defined by

BA = min
x �=0

[wH(x) + wH(A(x))].

Notice that the similarity of the definitions of the number of active s-boxes and
branch number, the branch number of a diffusion layer gives the lower bound of
number of active s-boxes.
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s1 s5 s9 s13 s17 s21 s25 s29

s2 s6 s10 s14 s18 s22 s26 s30

s3 s7 s11 s15 s19 s23 s27 s31

s4 s8 s12 s16 s20 s24 s28 s32

Fig. 2. 4 × 8 array of s-boxes

3 Constructing 32 × 32 Binary Matrix

In this section, we introduce a method to construct 32×32 binary matrix which
is used as a diffusion layer of 256-bit SPN block cipher. To construct a ‘Good’
binary matrix, we set some criteria as follows :

• The branch number is bigger than 10.
• Efficient implementation in 8-bit processor.
• Easy to implement in 32-bit processor.
• Secure against truncated and impossible differential attacks.

After generating huge number of matrices with the method in the following 3.1,
matrices are filtered out by the criteria as described above.

3.1 Generation of Matrices

The basic concept for generating matrix is similar to 16 × 16 binary matrix
introduced in [1]. For generating a 32×32 binary matrix, we rearrange 32 s-boxes
to be a form of 4×8 s-box array shown in Fig. 2. From the formation of the 4×8
array, the following sequence of transformations are applied on array-by-array;
the sequence is the “row-wise” transformation, “column-wise” transformation,
and then “row-wise” transformation. A “row-wise” transformation is multiplying
the same 8×8 binary matrix to each row of the s-box array. And a “column-wise”
transformation is multiplying eight 4 × 4 binary matrices(allow to be same) to
each column of the array. Each transformations are represented as 32×32 binary
matrices.

Let R0 be an 8× 8 binary matrix for “row-wise” transformation;

R0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 0 1 1 1 1 0 0
1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 1
1 1 0 1 0 0 1 1
0 1 1 0 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The following 32× 32 binary matrix R is representing a “row-wise” transfor-
mation.

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I I I I I 0 0 0
I 0 I I I I 0 0
I I I 0 0 I I 0
I I 0 I I 0 0 I
I I 0 I 0 0 I I
0 I I 0 0 I I I
0 0 I 0 I I I I
0 0 0 I I I I I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where I is 4× 4 identity matrix, and 0 is 4× 4 zero matrix.
Let C0, C1, · · · , C7 be 4 × 4 binary matrices for column-wise transformation.

The following 32 × 32 binary matrix C is representing a “column-wise” trans-
formation.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0 0 0 0 0 0 0 0
0 C1 0 0 0 0 0 0
0 0 C2 0 0 0 0 0
0 0 0 C3 0 0 0 0
0 0 0 0 C4 0 0 0
0 0 0 0 0 C5 0 0
0 0 0 0 0 0 C6 0
0 0 0 0 0 0 0 C7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Combining the above two transformations, 32× 32 binary matrix

A = R · C · R (1)

is the matrix which we use as a diffusion layer.
There are many choices of R and C with respect to R0, Ci(i = 0, 1, · · · , 7).

And we find R0, Ci(i = 0, 1, · · · , 7) as follows so that A = R · C ·R satisfies the
criteria in the above section in 3.

R0 =

1 1 1 1 1 0 0 0
1 0 1 1 1 1 0 0
1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 1
1 1 0 1 0 0 1 1
0 1 1 0 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1

,

C0 = C3 =

1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

, C1 = C2 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

C4 = C7 =

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

, C5 = C6 =

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

The 32× 32 binary matrix A = R · C ·R in Table 3 is the matrix we will use
in this paper.

The branch number of the binary matrix we find is 10, that is not the maxi-
mum since we have found binary matrices of branch number 12 by using different
ways which are not explained in this paper. The maximum branch number of
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Table 3. 32 × 32 binary matrix satisfying the criteria

A =

1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1
1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1
0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0
1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0
1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1
1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0
1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0
0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1
0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1
1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1
0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0
1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0
1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1
0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1
1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0
1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0
1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1
0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1
1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1

32×32 binary matrix is regarded to be 12, which has not been proven yet. Those
matrices of branch number 12 do not meet our criteria as we set in section 3,
such as the criterion of easy to implement in 32-bit processor. There are trade-off
relation between the minimum number of rounds and the number of operations
per round for satisfying a certain level of security, that is the reason why we
select the binary matrix of branch number 10. Many coding theory researchers
suggest bounds for the maximum distance of binary linear codes. The bound for
(64, 32) code is from 12 to 16, but there are examples of (64, 32, 12) code only
and it has been proved that there is no (64, 32, 17) code [9]. Although we have
found many 32× 32 binary matrix of branch number 12, we do not show them
because the generation method is different and they are not suitable for 32-bit
processors comparing to use matrices of branch number 10.

4 Implementations

The binary matrix we found is suitable for efficient implementations on vari-
ous environments, especially on 8-bit processors. We present some techniques
which optimize implementations on 8-bit processors and on 32-bit processors
similar to the techniques used to implement the block cipher ARIA. We set the
input/output size of s-box is 8 which is widely used.
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4.1 8-Bit Processor

On an 8-bit processor, the equation A · x = y is representing byte-wise xor’s
where A is the 32×32 binary matrix, and x, y are 32-dimensional binary vectors.
Since the Hamming wight of the matrix A is 432, there would be 400 xor’s for
implementing the equation by elementary calculations. The total number of byte
xor’s can be reduced to 286 by using the following two equations.

y16 = x1 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13 ⊕ x14 ⊕ x15⊕
x17 ⊕ x20 ⊕ x21 ⊕ x24 ⊕ x29 ⊕ x30 ⊕ x32

y22 = x6 ⊕ x8 ⊕ x14 ⊕ x15 ⊕ x17 ⊕ x21 ⊕ x22 ⊕ x24 ⊕ x26 ⊕ x27⊕
x29 ⊕ x30 ⊕ x32

(2)

Note that there are 28 xor’s to get y16 and y22. Using an additional variable T1

reduces the total number of xor’s from 28 to 19.

T1 = x6 ⊕ x8 ⊕ x14 ⊕ x15 ⊕ x17 ⊕ x21 ⊕ x24 ⊕ x29 ⊕ x30 ⊕ x32

y16 = T1 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x11 ⊕ x13 ⊕ x20

y22 = T1 ⊕ x22 ⊕ x24 ⊕ x26 ⊕ x27

(3)

By applying similar arguments, we reduce the total number of xor to 286 for
implementing A · x = y.

4.2 32-Bit Processor

On a 32-bit processor, the substitution and diffusion layers of Rijndael is encoded
by 16 table-lookups followed by 16 xor’s which are combined s-box layer with
the diffusion layer [10].

We use this method to implement A · S where A = R · C · R(Section 3. 1)
and S is the s-box layer. A permutation matrix P is introduced for reducing the
number of byte operations by matrix decomposition and combining with s-box
layer as followings.

The s-box layer S is combined with the following pre-defined binary matrix
M and implemented into 32 table-lookups.

Table 4. The binary matrix M

M =

T 0 0 0 0 0 0 0
0 T 0 0 0 0 0 0
0 0 T 0 0 0 0 0
0 0 0 T 0 0 0 0
0 0 0 0 T 0 0 0
0 0 0 0 0 T 0 0
0 0 0 0 0 0 T 0
0 0 0 0 0 0 0 T

, where T =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

There exist the binary matrix C∗ such that

A · S = R · C ·R · S = R · C∗ · C · S. (4)
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It is clear that C∗ = C · R · C−1. Notice that M is an involution, we can find a
permutation matrix Q such that C = Q ·M , which is Q = C ·M . We have the
following equation (5),

A · S = R · C∗ ·Q ·M · S. (5)

Finding a matrix P such that

P · R = C∗ ·Q (6)

is equivalent to have P = C∗ ·Q ·R−1. Now we have the following equation (7).

A · S = R · P · R ·M · S. (7)

Note that the matrix P is derived from C and the number of xor’s for imple-
menting M · S is the same as implementing S. So the choice of C is important
for the efficiency of implementation on 32-bit processors.

5 Security

5.1 Resistance Against DC/LC

We consider a 2r-round SPN where a round is consisting of the s-box layer
followed by the 32×32 binary matrix A of branch number BA = 10 as a diffusion
layer as in Fig. 1. The s-box layer is consisting of the same 32 8-bit s-box which
represents an exponential function xe followed by an affine transformation.

Letting the maximum probabilities of differential and linear characteristic be
2−6, the maximum probabilities of differential(PD) and linear characteristic(PL)
for 2r-round SPN are the followings [8].

P 2r
D ≤ (2−6)(r×BA), P 2r

L ≤ (2−6)(r×BA).

Since the branch number of the binary matrix A is 10, the maximum probabil-
ities of differential and linear of 2-round SPN is bounded by (2−6)(1×10) = 2−60.

The lower bounds for the number of active s-boxes and the upper bounds for
probabilities of differential and linear characteristic in each rounds are listed in
the following Table 5. If 256-bit key is used, the maximum probabilities of dif-
ferential and linear characteristic of 10-round SPN is bounded by (2−6)(5×10) =
2−300. Therefore the minimum number of rounds to be secure against differential
and linear cryptanalysis is 10.

5.2 Resistance Against TDC/IDC

The probability pr of an iterative difference can be estimated for r-round by the
following equation (8) [11].

pr ≈ (2−8)wH (Δx1)−1 × · · · × (2−8)wH (Δxr)−1

= (2−8)wH (Δx1)+···+wH(Δxr)−r, (8)
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Table 5. A lower bounds for the number of active S-boxes, upper bound for the
probabilities of differential and linear characteristic

The lower bounds on the Upper bound on differential
Rounds number of active s-boxes and linear probabilities

2 10 2−60

3 11 2−66

4 20 2−120

5 21 2−126

6 30 2−180

7 31 2−186

8 40 2−240

9 41 2−246

10 50 2−300

11 51 2−306

12 60 2−366

where Δx̃1 is the byte pattern of an input difference and Δx̃i+1 = A(Δx̃i) is the
byte pattern of the output difference.

By our investigation on all byte patterns, there is no 2∼10-round iterative
byte pattern of input difference whose hamming weight is less than 6. There
exists a 2-round iterative byte pattern of input difference of hamming weight 6,
so we have pr = (2−8)6+4−2 = 2−64 and (2−64)5 = 2−320 ≤ 2−256, which implies
that the minimum number of rounds to be secure against TDC for the SPN with
the matrix A is 10.

We have checked that there is no byte whose difference is zero(or nonzero) after
two rounds where the round function is shown in Fig. 1. Also, we have checked
that there is no byte whose difference is always zero or nonzero after two rounds
in reverse direction, where the reverse direction means that the inverse of the
round function. Therefore, we see that there is no impossible differential in four
or more rounds. The number in each byte position in Table 7 of appendix A is
representing the number of previous nonzero byte position affecting the current
byte position.

6 Efficiency Comparison

Comparing with Rijndael-256, we consider a round function which is consisting
of s-box layer, diffusion layer, and key xor layer. We show that the minimum
number of rounds to be secure against DC and LC is 10. We set the total number
of rounds 12, which is the minimum number of rounds derived from security
analysis in Section 5 and [12]. We give some theoretic numbers for measuring
efficiency of two SPN structures. In the tables 6, the numbers of operations to
be required for implementation on 8-bit and 32-bit processors are listed. Both
structure have a round function with the same size and number of table look-ups
for each implementation.
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Table 6. Number of operations for implementation

Number of xor Number of Total number
Processor Cipher name Rounds per round shift operation of xor

Rijndael-256 14 280 - 3920
8-bit SPN using A 12 286 - 3432

Rijndael-256 14 32 24 448
32-bit SPN using A 12 54 36 648

The total number of operations required for implementing of the SPN using
A on an 8-bit processor is less than the those of Rijndael-256 as described in the
Table 6. However the total number of operations required for implementing of
the SPN using A on an 32-bit processor is bigger than the those of Rijndael-256
as described in the Table 6.

7 Conclusion

In this paper, we describe how to generate a cryptographically good 32 × 32
binary matrix. We generate the binary matrix A of branch number 10 and that
is secure against well-known attacks when it is applying in reasonable rounds
and suitable for various platforms. We compare the SPN structure using the
binary matrix A with Rijndael-256 in efficiency point of view.

As the comparison results, the binary matrix A is more efficient than the
diffusion layer used Rijndael-256 in 8-bit environments. This indicates that the
binary matrix has better performance on low bit implementations. In fact, some
implementing results show that the hardware performance of block cipher with
binary matrix(e.g. ARIA) is better than Rijndael-128 [13].

Since the binary matrix A we introduce can be regarded as an extended version
of binary matrix in ARIA, 32×32 binary matrix can be used as a diffusion layer
of a 256-bit input/output block cipher. As we have discussed in Section 1, if we
need to design a 256-bit block cipher, then the SPN-structure with the binary
matrix that we suggest in Section 3 is a candidate of extension of ARIA. So we
are working on designing an SPN structure block cipher with using the 32× 32
binary matrix A and hope to have a detailed results of a complete block cipher.
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Appendix A

Table 7. The byte pattern of 2-round for 32 input states of hamming weight 1

Input (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 )
2-round result ( 12 6 13 12 6 8 3 4 9 8 9 7 9 11 8 8 4 5 7 9 5 3 5 8 8 10 6 5 4 6 5 8 )

Input (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 )
2-round result ( 12 12 6 13 4 6 8 3 7 9 8 9 8 9 11 8 9 4 5 7 8 5 3 5 5 8 10 6 8 4 6 5 )

Input (0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 )
2-round result ( 13 12 12 6 3 4 6 8 9 7 9 8 8 8 9 11 7 9 4 5 5 8 5 3 6 5 8 10 5 8 4 6 )

Input (0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 )
2-round result ( 6 13 12 12 8 3 4 6 8 9 7 9 11 8 8 9 5 7 9 4 3 5 8 5 10 6 5 8 6 5 8 4 )

Input (0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 )
2-round result ( 6 8 3 4 6 2 9 4 4 4 6 5 6 4 6 9 5 5 4 4 6 6 4 3 4 2 5 4 7 5 6 5 )

Input (0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 )
2-round result ( 4 6 8 3 4 6 2 9 5 4 4 6 9 6 4 6 4 5 5 4 3 6 6 4 4 4 2 5 5 7 5 6 )

Input (0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 )
2-round result ( 3 4 6 8 9 4 6 2 6 5 4 4 6 9 6 4 4 4 5 5 4 3 6 6 5 4 4 2 6 5 7 5 )

Input (0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 )
2-round result ( 8 3 4 6 2 9 4 6 4 6 5 4 4 6 9 6 5 4 4 5 6 4 3 6 2 5 4 4 5 6 5 7 )

Input (0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 )
2-round result ( 9 8 9 7 4 4 6 5 8 8 11 6 5 4 6 8 7 7 4 5 4 4 2 3 7 7 7 6 3 3 2 6 )

Input (0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 )
2-round result ( 7 9 8 9 5 4 4 6 6 8 8 11 8 5 4 6 5 7 7 4 3 4 4 2 6 7 7 7 6 3 3 2 )

Input (0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 )
2-round result ( 9 7 9 8 6 5 4 4 11 6 8 8 6 8 5 4 4 5 7 7 2 3 4 4 7 6 7 7 2 6 3 3 )

Input (0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 )
2-round result ( 8 9 7 9 4 6 5 4 8 11 6 8 4 6 8 5 7 4 5 7 4 2 3 4 7 7 6 7 3 2 6 3 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 )
2-round result ( 9 11 8 8 6 4 6 9 5 4 6 8 11 8 12 12 6 6 5 4 9 8 7 5 3 3 7 8 9 9 8 7 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 )
2-round result ( 8 9 11 8 9 6 4 6 8 5 4 6 12 11 8 12 4 6 6 5 5 9 8 7 8 3 3 7 7 9 9 8 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 )
2-round result ( 8 8 9 11 6 9 6 4 6 8 5 4 12 12 11 8 5 4 6 6 7 5 9 8 7 8 3 3 8 7 9 9 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 )
2-round result ( 11 8 8 9 4 6 9 6 4 6 8 5 8 12 12 11 6 5 4 6 8 7 5 9 3 7 8 3 9 8 7 9 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 )
2-round result ( 4 5 7 9 5 5 4 4 7 7 4 5 6 6 5 4 6 4 7 4 2 3 6 4 6 6 4 3 4 4 6 5 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 )
2-round result ( 9 4 5 7 4 5 5 4 5 7 7 4 4 6 6 5 4 6 4 7 4 2 3 6 3 6 6 4 5 4 4 6 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 )
2-round result ( 7 9 4 5 4 4 5 5 4 5 7 7 5 4 6 6 7 4 6 4 6 4 2 3 4 3 6 6 6 5 4 4 )
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Table 7. (Continued)

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 )
2-round result ( 5 7 9 4 5 4 4 5 7 4 5 7 6 5 4 6 4 7 4 6 3 6 4 2 6 4 3 6 4 6 5 4 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 )
2-round result ( 5 3 5 8 6 6 4 3 4 4 2 3 9 8 7 5 2 3 6 4 8 4 11 8 4 5 3 4 7 6 8 6 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 )
2-round result ( 8 5 3 5 3 6 6 4 3 4 4 2 5 9 8 7 4 2 3 6 8 8 4 11 4 4 5 3 6 7 6 8 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 )
1-round result ( 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 )
2-round result ( 5 8 5 3 4 3 6 6 2 3 4 4 7 5 9 8 6 4 2 3 11 8 8 4 3 4 4 5 8 6 7 6 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 )
1-round result ( 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 )
2-round result ( 3 5 8 5 6 4 3 6 4 2 3 4 8 7 5 9 3 6 4 2 4 11 8 8 5 3 4 4 6 8 6 7 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 )
1-round result ( 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 )
2-round result ( 8 10 6 5 4 2 5 4 7 7 7 6 3 3 7 8 6 6 4 3 4 5 3 4 9 6 8 8 3 4 3 3 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 )
1-round result ( 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 )
2-round result ( 5 8 10 6 4 4 2 5 6 7 7 7 8 3 3 7 3 6 6 4 4 4 5 3 8 9 6 8 3 3 4 3 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 )
1-round result ( 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 )
2-round result ( 6 5 8 10 5 4 4 2 7 6 7 7 7 8 3 3 4 3 6 6 3 4 4 5 8 8 9 6 3 3 3 4 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 )
1-round result ( 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 )
2-round result ( 10 6 5 8 2 5 4 4 7 7 6 7 3 7 8 3 6 4 3 6 5 3 4 4 6 8 8 9 4 3 3 3 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 )
1-round result ( 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 )
2-round result ( 4 6 5 8 7 5 6 5 3 3 2 6 9 9 8 7 4 4 6 5 7 6 8 6 3 4 3 3 10 6 11 6 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 )
1-round result ( 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1 )
2-round result ( 8 4 6 5 5 7 5 6 6 3 3 2 7 9 9 8 5 4 4 6 6 7 6 8 3 3 4 3 6 10 6 11 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 )
1-round result ( 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 )
2-round result ( 5 8 4 6 6 5 7 5 2 6 3 3 8 7 9 9 6 5 4 4 8 6 7 6 3 3 3 4 11 6 10 6 )

Input (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 )
1-round result ( 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 )
2-round result ( 6 5 8 4 5 6 5 7 3 2 6 3 9 8 7 9 4 6 5 4 6 8 6 7 4 3 3 3 6 11 6 10 )
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Abstract. Algebraic immunity AI(f) defined for a boolean function f
measures the resistance of the function against algebraic attacks. Cur-
rently known algorithms for computing the optimal annihilator of f and
AI(f) are inefficient. This work consists of two parts. In the first part, we
extend the concept of algebraic immunity. In particular, we argue that a
function f may be replaced by another boolean function fc called the al-
gebraic complement of f . This motivates us to examine AI(fc). We define
the extended algebraic immunity of f as AI∗(f) = min{AI(f), AI(fc)}.
We prove that 0 ≤ AI(f) − AI∗(f) ≤ 1. Since AI(f) − AI∗(f) = 1
holds for a large number of cases, the difference between AI(f) and
AI∗(f) cannot be ignored in algebraic attacks. In the second part, we
link boolean functions to hypergraphs so that we can apply known re-
sults in hypergraph theory to boolean functions. This not only allows us
to find annihilators in a fast and simple way but also provides a good
estimation of the upper bound on AI∗(f).

Keywords: Algebraic Attacks, Algebraic Immunity, Hypergraph
Theory, Greedy Algorithm.

1 Introduction to Algebraic Immunity

Recent algebraic attacks [4,5,3,6,14,7,8,2,1,16,9] have become a powerful tool
that can be used for almost all types of cryptographic systems. Normally an
algebraic attack is run in two stages. In the first stage, attackers build algebraic
equations that reflect the relations between inputs, outputs and a secret key.
In the second stage, attackers solve the algebraic equations in order to discover
the secret key or restrict the secret key to a small domain (then exhaustively
search the small domain). Algebraic attacks will be more efficient if algebraic
equations have low degrees because the number of monomials (terms) of low
degree is relatively small. Using annihilators is one of techniques to enable us
to produce algebraic equations of low degree. Algebraic attacks have been used
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very successfully to analyse LFSR-based stream ciphers because all the alge-
braic equations preserve their algebraic degree. The concept of annihilators for
algebraic attacks was introduced by Courtois and Meier in [5]. For a boolean
function f with n-bit inputs, AN(f) is a set of boolean functions, defined as
AN(f) = {g : (GF (2))n → GF (2)|f(x)g(x) = 0, for all x ∈ (GF (2))n}. Each
function g ∈ AN(f) is called an annihilator of f . Courtois and Meier [5] pro-
posed three different scenarios to reduce the degree of algebraic equations. They
discussed the relation among the three scenarios S3a, S3b and S3c in [6]. Later
Meier at el. [14] showed that the scenario S3c can be replaced by the scenario
S3a. Dalai et al [8] demonstrated that all the scenarios are equivalent to finding
the union of two related annihilators, namely, AN(f) and AN(1 ⊕ f) and then
they defined the algebraic immunity AI(f) as the minimum degree of nonzero
boolean functions in AN(f) ∪AN(1⊕ f).

We now explain an application of annihilators to algebraic attacks. We may
consider two types of algebraic equations, namely f(x) = 0 or f(x) = 1. For an
algebraic equation f(x) = 0, multiplying the equation by g1, such that g1f = h
is of a lower degree than the degree of f . Consequently, the attackers obtain a
lower degree equation h(x) = 0. For the algebraic equation f(x) = 1, multiplying
the equation by g2 of a low degree such that g2f is identical to the constant zero.
Then the attackers obtain a lower degree equation g2(x) = 0.

Courtois and Meier [5,6] studied AI(f) and proved that AI(f) ≤ �n/2� where
�c� denotes the smallest integer that is equal to or bigger than c. The problem
of finding function f , such that AI(f) = �n/2�, was examined in [8,2]. It is
easy to observe that AI(f) is never higher than its degree, i.e. AI(f) ≤ deg(f).
This fact is true because (1 ⊕ f)f = 0. In general, for any boolean function f
of n variables, we have AI(f) ≤ min{deg(f), �n/2�}. Very recently, Armknecht
et al [1] presented a method by which the algebraic immunity of a random
boolean function with n variables and degree d can be computed in O(D2)
steps where D =

∑d
i=0

(
n
i

)
. This is an improvement on the previous best result

O(D3). This method is efficient for many classes of boolean functions including
boolean functions of low degree. However D2 will be as large asO(2n) for random
functions when d is larger than or close to 1

2n.

2 Introduction to This Work

This work is composed of two parts. In the first part, we review the current
definition of algebraic immunity and extend the concept. For a boolean function
f , we create its algebraic complement f c and define extended algebraic immunity
of the function f as AI∗(f) = min{AI(f), AI(f c)}. We next prove that 0 ≤
AI(f) − AI∗(f) ≤ 1. Since AI(f) − AI∗(f) = 1 holds for a large number of
cases, the difference between AI(f) and AI∗(f) cannot be ignored in algebraic
attacks. AI∗(f) is applicable not only to LFSR-based stream ciphers but also
to other ciphers whenever attackers can replace the original function f by f c.
In the second part, we apply the hypergraph theory to study annihilators. This
new approach enables us to examine the relation among boolean functions f ,
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1 ⊕ f , f c and 1 ⊕ f c. The main tool we use here is the concept of transversals
in the hypergraph theory. We can produce annihilators of a function f , and its
related functions 1⊕ f , f c and 1⊕ f c and obtain an upper bound on AI∗(f) in
a fast and straightforward way. We also prove that the functions obtained in our
approach must be annihilators, although they may not be optimal. Further we
argue that the transversal number can be smaller than both deg(f) and �n/2�.
This means the transversal number gives a new upper bound on AI∗(f).

The rest of the paper is organised as follows. We review the definition of al-
gebraic immunity AI(f) and present the extended algebraic immunity AI∗(f)
in Section 3. We briefly introduce the hypergraph theory in Section 4. We de-
scribe the connection between boolean functions and hypergraphs in Section 5.
In Sections 6 we show how to convert the problem of finding annihilators into
the related problem of finding transversals in a hypergraph. Then in Section 7
we derive an upper-bound on AI∗(f). In Section 8 we study boolean functions
and their transversal numbers. In Section 9 we apply the well-known greedy al-
gorithm in order to find annihilators for boolean functions in an efficient and
straightforward way. Section 10 concludes the work. In the Appendix we elabo-
rate how to use the greedy algorithm to obtain better annihilators.

3 Extended Algebraic Immunity

In this section we present the concept of extended algebraic immunity. Through-
out the paper we are going to use the following notations. The vector space of
n-tuples of elements from GF (2) is denoted by (GF (2))n. We write all vectors in
(GF (2))n as (0, . . . , 0, 0) = α0, (0, . . . , 0, 1) = α1, . . ., (1, . . . , 1, 1) = α2n−1, and
call αi the binary representation of integer i, i = 0, 1, . . . , 2n − 1. A boolean
function f is a mapping from (GF (2))n to GF (2) or simply, a function f
on (GF (2))n. The Hamming weight of f , denoted by HW (f), is defined as
HW (f) = #{α ∈ (GF (2))n, f(α) = 1}, where # denotes the cardinality of
a set. We express f as f(x) = f(x1, . . . , xn) where x = (x1, . . . , xn) ∈ (GF (2))n.
The function f can be uniquely represented by a polynomial f(x1, . . . , xn) =⊕

α∈(GF (2))n g(a1, . . . , an)xa1
1 · · ·xan

n where α = (a1, . . . , an), and g is also a
function on (GF (2))n. The polynomial representation of f is called the algebraic
normal form (ANF) of the function and each xa1

1 · · ·xan
n is called a monomial

(term) in ANF of f . The algebraic degree, or simply degree, of f , denoted by
deg(f), is defined as the number of variables in the longest monomial of f , i.e.,
deg(f) = max{HW (α) | g(α) = 1, α ∈ (GF (2))n}.

As an example, we consider stream ciphers based on LFSRs (Linear Feedback
Shift Registers [10]). A such stream cipher is composed of two parts: a single
LFSR defined by a connection function L and a nonlinear filter (boolean func-
tion) f on (GF (2))n, where both L and f are known. A secret vector state K is
also called the initial state. The stream cipher generates a sequence of keystream
bits bi as follows:

bi = f(Li(K)), i = 0, 1, . . . (1)
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In a typical attack, adversaries wish to find the initial state K knowing the
structure of the cipher (i.e. functions L and f) and a sequence of keystream bits bi

for some (not necessarily consecutive) clocks i. Since L is a linear transformation,
Li(0) = 0, i = 0, 1, . . .. Therefore K must NOT be the all-zero state.

Notation 1. Set Δ(x)=(1⊕x1) · · · (1⊕xn) where x = (x1, . . . , xn) ∈ (GF (2))n.

It is easy to prove the following lemma.

Lemma 1. The function Δ(x) has the following properties. (i) Δ(α) �= 0 if and
only if α = 0, (ii) h(x)Δ(x) is identical with the constant zero for any boolean
function g ∈ (GF (2))n with h(0) = 0, (iii) h(x)Δ(x) is identical with Δ(x) for
any boolean function g ∈ (GF (2))n with h(0) = 1.

Notation 2. Given a function f on (GF (2))n. We define an algebraic comple-
ment of f , denoted by f c, as the function that contains all monomials xa1

1 · · ·xan
n ,

where each aj ∈ {0, 1}, that are not in ANF of the function f .

The following properties of the algebraic complement are obvious: (1) (f c)c = f
for any function f ; (2) any pair of functions (f, f c) does not have any monomials
in common.

Lemma 2. Let f be a function on (GF (2))n. Then (i) f c(x) = Δ(x)⊕ f(x) for
all x ∈ (GF (2))n, (ii) f c(x) = f(x) for all nonzero x ∈ (GF (2))n.

Proof. It is easy to verify that ANF of Δ(x) contains all 2n−1 possible monomials
xa1

1 · · ·xan
n . Thus the statement (i) is true. Using Lemma 1, we can say that the

statement (ii) holds.

Due to (ii) of Lemma 2, f can be replaced by f c. This leads us to the following
theorem.

Theorem 1. Let the connection function L be nonsingular (i.e. L(α) �= L(α′)
if α �= α′). Then Equation (1) is true if and only if

bi = f c(Li(K)), i = 0, 1, . . . (2)

holds.

Proof. It is noted that the secret K must be nonzero. Since L is linear and
nonsingular, Li(K) �= 0, i = 0, 1, . . .. According to Lemma 2, we have proved
the theorem. ��

Note that there exists no guarantee that AI(f) and AI(f c) are equal. This can
be seen from a large number of evidences, for instance

Example 1. Let f(x1, x2, x3) = x2x3⊕ x2 ⊕ x3 ⊕ x1 ⊕ 1. Then its algebraic
complement is f c(x1, x2, x3) = x1x2x3⊕ x1x2 ⊕ x1x3. It is easy to check that
AI(f) = 2 but AI(f c) = 1. ��
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Clearly, in an algebraic attack, adversaries are going to compute both AI(f) and
AI(f c) and find annihilators for both functions f and f c. Obviously, they can
apply the annihilator whose degree is lowest. This is the reason why we need to
revise the concept of algebraic immunity.

Definition 1. Given a function f on (GF (2))n. The extended algebraic im-
munity of f , denoted by AI∗(f), is the minimum degree of nonzero boolean
functions in AN(f) ∪ AN(1 ⊕ f) ∪ AN(f c) ∪ AN(1 ⊕ f c), or in other words,
AI∗(f) = min{AI(f), AI(f c)}.

Example 2. In Example 1, the extended algebraic immunity AI∗(f) = 1 but the
algebraic immunity AI(f) = 2. ��

Theorem 2. Let f a function on (GF (2))n. Then

(i) |AI(f)−AI(f c)| ≤ 1,
(ii) 0 ≤ AI(f)−AI∗(f) ≤ 1 and 0 ≤ AI(f c)−AI∗(f) ≤ 1.

Proof. Let g ∈ AN(f) ∪ AN(1 ⊕ f) such that deg(g) = AI(f). It is easy to
see that there exists some i0 with 1 ≤ i0 ≤ n such that 1 ⊕ xi0 is not a factor
of g, or in other words, g cannot be expressed as g(x) = (1 ⊕ xi0 )g′(y) where
g′ is a boolean function on (GF (2))n−1. Hence xi0g(x) is a nonzero function.
Due to Lemma 1, xi0Δ(x) is identical with the constant zero. There exist two
cases to be considered: g ∈ AN(f) and g ∈ AN(1 ⊕ f). Consider the first
case: g ∈ AN(f). The function gf is identical with the constant zero. Therefore
xi0g(x)f c(x) or xi0g(x)(f(x) ⊕ Δ(x)) is identical with the constant zero. This
implies that xi0g(x) ∈ AN(f c) and thus AI(f c) ≤ 1 + AI(f). We next consider
the second case: g ∈ AN(1 ⊕ f). The function g(1 ⊕ f) is identical with the
constant zero. Therefore xi0g(x)(1⊕ f c(x)) or xi0g(x)(1⊕ f(x)⊕Δ(x)) is iden-
tical with the constant zero. This implies that xi0g(x) ∈ AN(1 ⊕ f c) and thus
AI(f c) ≤ 1 + AI(f). We then have proved that AI(f c) ≤ 1 + AI(f) in both
cases. Since (f c)c = f , we know that AI(f) ≤ 1 + AI(f c). AI(f c) ≤ 1 + AI(f)
and AI(f) ≤ 1+AI(f c) together imply that −1+AI(f) ≤ AI(f c) ≤ 1+AI(f),
i.e., |AI(f)−AI(f c)| ≤ 1. Thus we have proved the relation (i) of the theorem.
The relation (ii) is true due to (i) and the definition of AI∗(f). ��

Theorem 3. Let f be a function on (GF (2))n. Then AI∗(f) = AI(f) if there
exists some h in AN(f) ∪ AN(1 ⊕ f) with deg(h) = AI(f) and h(0) = 0, and,
there exists some g in AN(f c)∪AN(1⊕f c) with deg(g) = AI(f c) and g(0) = 0.

Proof. Let h ∈ AN(f) ∪ AN(1 ⊕ f) with deg(h) = AI(f) and h(0) = 0. Due
to Lemma 1, the function h(x)Δ(x) is identical with the constant zero. Thus
h(x)f c(x) = h(x)(f(x)⊕Δ(x)) = h(x)f(x). Similarly, h(x)(1⊕f c(x)) = h(x)(1⊕
f(x)⊕Δ(x)) = h(x)(1⊕f(x)). Consequently, h is either an annihilator of f c or an
annihilator of 1⊕f c and then AI(f c) ≤ AI(f). Symmetrically, AI(f) ≤ AI(f c).
Thus AI(f c) = AI(f) and thus AI(f∗) = AI(f). ��

Due to Theorem 3, AI(f)−AI∗(f) = 0 may hold sometimes. However the next
example indicates that AI(f)−AI∗(f) = 1 can also hold.
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Example 3. Let Δ(y) be the function on (GF (2))p defined in Notation 1 and
βj ∈ (GF (2))p be the binary representation of positive integer j, j = 1, . . . , 2p−1.
Let q ≥ 2p − 1 be another integer. Thus there exist 2p − 1 linearly independent
linear functions ψ1, . . . , ψ2p−1 on (GF (2))q . Define a function on (GF (2))p+q :
f(x) =

⊕2p−1
j=1 Δ(y ⊕ βj)ψj(z) ⊕ Πq+p

i=1 (1 ⊕ xi) where y = (x1, . . . , xp), z =

(xp+1, . . . , xp+q) and x = (y, z). Then f c(x) =
⊕2p−1

j=1 Δ(y ⊕ βj)ψj(z). It is
not hard to verify that AI(f) ≥ p + 1 and AI(f c) ≥ p. Since Δ(y)Δ(y ⊕ β)
is identical with the constant zero for any nonzero β ∈ (GF (2))p, Δ(y) is an
annihilator of f c. Thus AI(f c) ≤ p. AI(f c) ≥ p and AI(f c) ≤ p together imply
that AI(f c) = p. Due to AI(f c) = p, AI(f) ≥ p + 1 and Theorem 2, we have
AI(f) = p + 1. Hence we have proved that AI(f) = p + 1 but AI∗(f) = p. ��

Due to Example 3, AI(f) − AI∗(f) = 1 holds for a large number of boolean
functions. Therefore the difference between AI(f) and AI∗(f) cannot be ignored
in algebraic attacks. Observe that the extended algebraic immunity AI∗(f) is
not only relevant to LFSR-based stream ciphers but in general, to any ciphers
whose initial states do not contain the zero vector.

4 Brief Introduction to Hypergraph

Hypergraph theory is a part of combinatorics. The word “hypergraph” was intro-
duced in 1966. Let X = {x1, . . . , xn} be a finite set. Set E = {e1, . . . , em}, where
each ej is a subset of X . A hypergraph, denoted by ℵ, is the pair ℵ = (X, E).
Each xj is called a vertex, j = 1, . . . , n and each ej is called an edge; j = 1, . . . , m.
It should be noted that repeated edges are permitted. An edge e ∈ E is called
a loop if #e = 1. The rank of ℵ is defined as max{#e|e ∈ E}. In particular,
the hypergraph ℵ is called a graph if the rank of ℵ is less or equal to 2. Graph
theory was formed much earlier than hypergraph theory. Let X ′ be a subset of
X and E′ be a subset of E. If there exists some ej ∈ E′ such that X ′ ∩ ej �= ∅,
where ∅ denotes the empty set, we simply say that X ′ and E′ are associated. A
star centered at a vertex xj is a family of edges of ℵ associated with xj . The
degree of vertex xj , denoted by Δℵ(xj), is the size of the star centered at xj . The
maximum value of degrees of vertices is denoted by Δ(ℵ). Let X ′ ⊆ X , define
ℵ−X ′ as a hypergraph whose vertex set is X −X ′ and whose edge set consists
of all edges in E with all vertices in X−X ′. A sequence x1e1x2e2 · · ·xpepxp+1 is
called a path of length p joining x1 to xp+1, where p > 1, all the ej are distinct,
xj with 1 ≤ j ≤ p are distinct, and xj , xj+1 ∈ ej , j = 1, . . . , p. In particular,
if x1 = xp then the path is called a cycle of length p. A subset of X , say S,
is a stable set of ℵ, if ej �⊆ S for each j = 1, . . . , m. The maximum cardinality
of a stable set is called the stability number of ℵ and it is denoted by ς(ℵ). A
subset of X , say T , is a transversal of ℵ, if T ∩ ej �= ∅ for each j = 1, . . . , m.
The minimum cardinality of a transversal is called the transversal number of ℵ
and it is denoted by τ(ℵ). A subset of E, say M = {ej1 , . . . , ejq}, is a matching
of ℵ, if eju ∩ ejv = ∅, for u �= v. The maximum number of edges in a matching
is called the matching number of ℵ, denoted by ν(ℵ).
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5 Relating Hypergraphs to Boolean Functions

Definition 2. Let f be a function on (GF (2))n. If the constant monomial in
the ANF of f is zero (one) we say f to be 0-CM (1-CM).

Definition 3. Let f(x) or f(x1, . . . , xn) be a 0-CM boolean function on
(GF (2))n, where x = (x1, . . . , xn). We now define a hypergraph ℵ(f) associ-
ated with the function f as follows. The vertex set X(f) of ℵ(f) consists of all
variables of the function f , i.e. X(f) = {x1, . . . , xn}. A subset e = {xj1 , . . . , xjs}
over X(f) is an edge of ℵ(f) if and only if xj1 · · ·xjs is a monomial in ANF
of f . Denote the collection of edges of ℵ(f) by E(f). The hypergraph ℵ(f) =
(X(f), E(f)) is called the hypergraph of the 0-CM boolean function f . We de-
fine the hypergraph of the 1-CM boolean function f as the hypergraph of 1⊕ f
and use the same notation ℵ(f) = (X(f), E(f)).

According to Definition 3, for any boolean function f , there uniquely exists a
hypergraph ℵ such that ℵ = ℵ(f), but, for any hypergraph ℵ, there are pre-
cisely two boolean functions f and 1 ⊕ f whose hypergraphs are identical, i.e.
ℵ = ℵ(f) = ℵ(1⊕ f). Denote the stability number, the transversal number and
the matching number of ℵ(f) simply by ς(f), τ(f) and ν(f) respectively. In this
way we can apply the known results in the hypergraph theory in our study of
annihilators. The relation between boolean functions and hypergraphs was first
introduced by Zheng et al in [20]. Note, however, that the authors of [20] used
hypergraphs to examine the nonlinearity of boolean functions while in this work
we use hypergraphs to study annihilators and extended algebraic immunity. It
should also be noted that the relation between boolean functions and hyper-
graphs established in [20] contains a minor inaccuracy because 1-CM boolean
functions do not correspond to any hypergraph. Note also that 0-CM and 1-CM
can be united by the definition of algebraic immunity based on the scenarios S3a
and S3b: let h have a lower degree than f , then h is an annihilator of f if and
only if h(1⊕ f) = h, while, h is an annihilator of 1⊕ f if and only if hf = h.

6 Annihilators Versus Transversals

In this section we relate transversals to annihilators.

Lemma 3. For a given 0-CM function f on (GF (2))n, let T = {xj1 , . . . , xjt}
be a subset of X(f). Then the following equation holds

(1⊕ xj1) · · · (1⊕ xjt) · f = (1⊕ xj1 ) · · · (1⊕ xjt) · f |xj1=0,...,xjt=0.

Proof. Note that a(1 ⊕ a) = 0 holds for any a ∈ GF (2). Let xi1 · · ·xiv be a
monomial in ANF of f . If {xi1 , . . . , xiv}∩ {xj1 , . . . , xjt} �= ∅ then xi1 · · ·xiv · (1⊕
xj1) · · · (1 ⊕ xjt) turns out to be the zero boolean function. If {xi1 , . . . , xiv}∩
{xj1 , . . . , xjt} = ∅ then xi1 · · ·xiv · (1 ⊕ xj1) · · · (1 ⊕ xjt) will be different from
zero. Note that the monomials of f that have empty intersection with T are
uniquely identified by f |xj1=0,...,xjt=0. So the result follows. ��
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Note that Lemma 3 is relevant to the proof of Proposition 1 of [8] or the proof of
Proposition 2 of [2]. The authors of [2,8] indicated that the algebraic immunity
of a boolean function will be low if it has a sub-function of low degree. Since
the authors of [2,8] did not determine how many variables or which variables are
involved in such a sub-function, their claims need more investigation.

Lemma 4. Let f be a 0-CM function on (GF (2))n. Let T = {xj1 , . . . , xjt}
be a subset of X(f). Then the following statements are equivalent: (i) T is a
transversal of ℵ(f), (ii) (1 ⊕ xj1 ) · · · (1 ⊕ xjt) is an annihilator of the function
f , (iii) f |xj1=0,...,xjt=0 vanishes or is identical with the constant zero.

This lemma establishes a relation between annihilators of f and transversals of
ℵ(f). Due to Lemma 4, we can introduce the following equivalence.

Definition 4. If T = {xj1 , . . . , xjt} is a transversal of a 0-CM boolean func-
tion f then (1 ⊕ xj1) · · · (1 ⊕ xjt) is called the annihilator of the function f ,
corresponding to the transversal T .

7 Upper-Bound on Extended Algebraic Immunity

Theorem 4. For any boolean function f on (GF (2))n, the extended algebraic
immunity of f is upper-bounded by its transversal number, i.e.,

AI∗(f) ≤ min{τ(f), τ(f c)}.

Proof. According to Lemma 4, AI(f) ≤ τ(f) and AI(f c) ≤ τ(f c). Then
AI∗(f) ≤ min{τ(f), τ(f c)}. ��
In the hypergraph theory (see Section 3 of [11]), τ(ℵ) + ς(ℵ) = n, where ς(ℵ) is
the stability number of ℵ. This equality and Theorem 4 imply that the following
statement is true.

Corollary 1. For any boolean function f on (GF (2))n, the following upper
bound on extended algebraic immunity holds:

AI∗(f) ≤ min{�n/2�, deg(f), deg(f c), τ(f) = n− ς(f), τ(f c) = n− ς(f c)}.

According to Corollary 1, a large transversal number min{τ(f), τ(f c)} is nec-
essary for resistance against algebraic attacks. In the next section, we show a
large number of boolean functions whose transversal numbers are less than both
deg(f) and �n/2�. Therefore the new bound in Theorem 4 or Corollary 1 is
non-trivial.

8 Boolean Functions with Low Transversal Number

Throughout this section, we discuss only f however we can do the same for f c

and then study AI∗(f). We indicate that there exist a large number of boolean
functions with small transversal number. It is known that the inequality ν(ℵ) ≤
τ(ℵ) holds for every hypergraph [11] where ν(ℵ) is the matching number of ℵ.
The hypergraph ℵ is said to satisfy the König property if ν(ℵ) = τ(ℵ). We say
that a boolean function f satisfies the König property if its hypergraph does.
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Theorem 5. Let f be a 0-CM boolean function on (GF (2))n satisfying the
König property. Let M be a matching of ℵ(f) such that #M = ν(f). Let us
denote λM = 1

ν(f)

∑
e∈M #e. Then AI(f) ≤ !n/λM", where !c" denotes the

maximum integer less than or equal to c.

Proof. It is noted that any two distinct e ∈ M and e′ ∈ M are disjoint because
M is a matching of ℵ(f). Thus λMν(ℵ) =

∑
e∈M #e ≤ n. It follows that ν(ℵ) ≤

n/λM . Due to the König Property τ(f) = μ(f), we know that τ(f) ≤ n/λM .
Since τ(f) is an integer, τ(f) ≤ !n/λM". We have proved the theorem. ��

The following is a consequence of Theorem 5.

Corollary 2. Let f be a 0-CM boolean function on (GF (2))n satisfying the
König property. Let M be a matching of ℵ(f) such that #M = ν(f). Let m0 =
min{#e | e ∈ M}. Then AI(f) ≤ !n/m0".

In Corollary 2, if m0 > min{2, n/deg(f)} then AI(f) < min{n/2, deg(f)}.
Therefore the König property of a function may result in a lower algebraic im-
munity.

Notation 3. Let f be a 0-CM function on (GF (2))n Let f [i], where i = 1, . . . , n,
denote the 0-CM function composed of all terms of f with degree at least i and f[i]

denote the 0-CM function on (GF (2))n composed of all terms of f with degree
at most i− 1. Clearly f = f [i] ⊕ f[i].

Lemma 5. Let f be a 0-CM boolean function on (GF (2))n and ℵ(f [i0]) satisfy
the König property for an integer i0 with 2 ≤ i0 ≤ n − 1. Then there exists a
transversal T = {xj1 , . . . , xjt} of ℵ(f [i0]) such that t ≤ !n/i0" and

(1 ⊕ xj1) · · · (1⊕ xjt) · f = (1 ⊕ xj1) · · · (1⊕ xjt) · f[i0]|xj1=0,...,xjt=0 (3)

where the degree of (1⊕ xj1 ) · · · (1⊕ xjt) · f[i0]|xj1=0,...,xjt=0 is at most !n/i0"+
i0 − 1, or, (1⊕ xj1 ) · · · (1⊕ xjt) · f[i0]|xj1=0,...,xjt=0 is identical with the constant
zero.

Proof. Applying the proof of Theorem 5 to ℵ(f [i0]), we know that τ(f [i0 ]) ≤
!n/λM", where λM is defined for f [i0]. Since i0 ≤ λM , we know that τ(f [i0]) ≤
!n/i0". Thus there exists a transversal T = {xj1 , . . . , xjt} of f [i0] such that #T =
t = τ(f [i0]) ≤ !n/i0". Therefore, from f = f [i0]⊕f[i0], we know that the equality
(3) holds. If T is also a transversal of f[i0]|xj1=0,...,xjt=0 then (1⊕xj1 ) · · · (1⊕xjt)·
f[i0]|xj1=0,...,xjt=0 will be identical with the constant zero. If T is not a transversal
of f[i0]|xj1=0,...,xjt=0 then the degree of (1⊕ xj1) · · · (1 ⊕ xjt) · f[i0]|xj1=0,...,xjt=0

is at most t + i0 − 1 = τ(f [i0]) + i0 − 1 ≤ !n/i0"+i0 − 1. We have proved the
lemma. ��

Corollary 3. Let f be a 0-CM boolean function on (GF (2))n. Let there be a
subset X ′ of X = {x1, . . . , xn} such that ℵ(f)−X ′ satisfies the König property.
Let M be a matching of ℵ(f) − X ′ such that #M = ν(ℵ(f) − X ′). Denote
λM = 1

ν(f)

∑
e∈M #e, then AI(f) ≤ #X ′ + !(n−#X ′)/λM".
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Proof. Applying Theorem 5 to the hypergraph ℵ(f) − X ′, we know that there
exists a transversal T ′ = {xj1 , . . . , xjt} of ℵ(f) − X ′ such that #T ′ ≤ !(n −
#X ′)/λM". Denote T = X ′ ∪ T ′. Clearly T is a transversal ℵ(f) and #T =
#X ′ + !(n−#X ′)/λM". Then the corollary holds. ��

Corollary 3 shows that if a hypergraph does not satisfy the König property but its
a sub-hypergraph obtained by removing some vertices does, then the transversal
number τ can be small.

Example 4. In Lemma 5, if #i0 ≈
√

n then the degree of (1 ⊕ xj1) · · · (1 ⊕
xjt) · f[i0]|xj1=0,...,xjt=0 is approximately 2

√
n − 1. This shows a possible lower

algebraic immunity. In fact, it is easy to verify that AI(f) < min{n/2, deg(f)}
when n ≥ 12 and 2

√
n − 1 < deg(f). It is noted that the real-valued function

ϕ(t) = n/t + t− 1 reaches its minimum value ϕ(
√

n) = 2
√

n− 1. ��

There exist many sufficient conditions for the König property. For example, a
hypergraph ℵ will satisfy the König property if it does not have a cycle of odd
length [11].

9 Annihilators by Greedy Algorithm

Throughout this section, we discuss only the original function f and symmetri-
cally we can do the same for the algebraic complement f c. The greedy algorithm
[11] is widely used in combinatorial optimisation. It is based on the natural
principle of building up a solution from best choices that are made locally.

9.1 Annihilators of 0-CM Boolean Functions by Greedy Algorithm

Let f be a 0-CM boolean function over the set X = {x1, . . . , xn} of variables
and its hypergraph ℵ(f). We would like to find the transversal T of ℵ(f). Below
we give the description of such algorithm.

greedy algorithm (finds a transversal T of ℵ(f))

1. Set T0 = ∅.
2. For k = 1, 2, · · · do {

– choose a vertex xjk
∈ ℵ(f)− Tk−1 where

Δℵ(f)−Tk−1(xjk
) = Δ(ℵ(f)− Tk−1),

– set Tk = Tk−1 ∪ {xjk
},

– if ℵ(f)− Tk is empty return the transversal Tk and exit. }

Let T = {xj1 , . . . , xjt} be a transversal obtained from the greedy algorithm.
According to Lemma 4, we know that (1⊕ xj1 ) · · · (1⊕ xjt) is an annihilator of
f , i.e., f · (1⊕ xj1) · · · (1⊕ xjt) is identical with the constant zero.

Note that the greedy algorithm does not guarantee that the resulting transver-
sal T is optimal. An optimal transversal should satisfy #T = τ(f). However, we
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still use the greedy algorithm to obtain a “reasonable” solution, and the greedy
algorithm is often used in practice. We also note that there may exist two or
more resulting transversals of ℵ(f) by the greedy algorithm because, for example,
there may exist two or more monomials whose degrees are equal to the deg(f).
Using the results from [12,19,13], the following statement can be proved.

Theorem 6. Let f be a 0-CM boolean function with n variables. Then for any
transversal T of ℵ(f) obtained by the greedy algorithm, there is an upper bound
on the cardinality of T and

#T ≤ τ(f)(1 + 1/2 + · · ·+ 1/deg(f)).

Our considerations are illustrated on a boolean function f that was used as the
filter function in the LILI-128 stream cipher [18]. Although the function f in the
next example was studied in [6], in this work we use it to illustrate the greedy
algorithm.

Example 5. Let f be the out filter function of LILI-128 (called fd in [18]) that
is a balanced, highly nonlinear and 3rd correlation immune boolean function of
degree 6 on (GF (2))10 constructed using design criteria given in [17]. ANF of f
is taken from [6]. We next list all the monomials of f . They are

x2, x3, x4, x5, x6x7, x1x8, x2x8, x1x9, x3x9, x4x10, x6x10, x3x7x9, x4x7x9, x6x7x9,
x3x8x9, x6x8x9, x4x7x10, x5x7x10, x6x7x10, x3x8x10, x4x8x10, x2x9x10, x3x9x10,
x4x9x10, x5x9x10, x3x7x8x10, x5x7x8x10, x2x7x9x10, x4x7x9x10, x6x7x9x10,
x1x8x9x10, x3x8x9x10, x4x8x9x10, x6x8x9x10, x4x6x7x9, x5x6x7x9, x2x7x8x9,
x4x7x8x9, x4x6x7x9x10, x5x6x7x9x10, x3x7x8x9x10, x4x7x8x9x10, x4x6x7x8x9,
x5x6x7x8x9, x4x6x7x8x9x10, x5x6x7x8x9x10.

We apply the greedy algorithm to ℵ(f). Since Δℵ(f)(x9)= Δ(ℵ(f)) = 30, we set
T1 = {x9}. We then have ℵ(f)− T1 = {x2, x3, x4, x5, x6x7, x1x8, x2x8, x4x10,
x6x10, x4x7x10, x5x7x10, x6x7x10, x3x8x10, x4x8x10, x3x7x8x10, x5x7x8x10}. As
Δℵ(f)−T1(x10) = Δℵ(f)−T1 = 9, we set T2 = T1 ∪ {x10}. Observe that ℵ(f) −
T2= {x2, x3, x4, x5, x6x7, x1x8, x2x8}. Although we can continue the greedy
algorithm until we find a transversal of f , we now stop the algorithm and multiple
f by (1⊕ x9)(1 ⊕ x10). According to Lemma 3, we get

(1⊕ x9)(1⊕ x10) · f
= (1 ⊕ x9)(1 ⊕ x10) · (x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6x7 ⊕ x1x8 ⊕ x2x8)

Thus multiplying the equation f(x1, . . . , x10) = 1 by (1⊕ x9)(1⊕ x10), we have

(1⊕ x9)(1 ⊕ x10) · (1⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6x7 ⊕ x1x8 ⊕ x2x8) = 0

Similarly, multiplying the equation f(x1, . . . , x10) = 0 by (1⊕ x9)(1 ⊕ x10), we
receive

(1⊕ x9)(1 ⊕ x10) · (x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6x7 ⊕ x1x8 ⊕ x2x8) = 0

Therefore we have reduced degree of the equations from 6 to 4. ��
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9.2 Greedy Algorithm on 1-CM Boolean Functions

Let f be a 1-CM function on (GF (2))n. Then 1⊕f is 0-CM. We apply the greedy
algorithm to ℵ(1 ⊕ f) and obtain a transversal T = {xj1 , . . . , xjt}. According
to Lemma 4, we know that (1⊕ xj1) · · · (1⊕ xjt) is an annihilator of 1⊕ f , i.e.,
(1 ⊕ f) · (1 ⊕ xj1 ) · · · (1 ⊕ xjt) is identical with the constant zero, or in other
words, f · (1⊕ xj1) · · · (1 ⊕ xjt) = (1 ⊕ xj1) · · · (1⊕ xjt).

9.3 Complexity of the Greedy Algorithm for Annihilators

We next investigate the complexity of the greedy algorithm for an annihilator.

Theorem 7. For any function f on (GF (2))n, by using the greedy algorithm,
we can obtain an annihilator of f or 1⊕ f in n(n + 1) steps.

Proof. For the case that f is 0-CM, we first compute Δℵ(f)(xj) = dj , j =
1, . . . , n. Thus it takes n steps to obtain d1, . . . , dn. Set p1 = d1. Assume we have
had pk. Set pk+1=max{pk, dk+1}. We then get pn. Clearly pn = max{d1, . . . , dn}.
Thus we only need n steps to find pn or xj0 such that Δℵ(f)(xj0 )= Δℵ(f). Con-
cluding, the computation takes at most 2n steps on ℵ(f) to find d1, . . . , dn, and
pn. Similarly, we compute the degree of each vertex of Δℵ(f)−{xj0}, and then
find xj1 such that Δℵ(f)−{xj0}(xj1 )= Δℵ(f)−{xj0}. The computation takes at
most 2(n− 1) steps on ℵ(f)−{xj0}. By using the greedy algorithm, we can find
an annihilator of a 0-CM function f with n variables in at most 2n+2(n−1)+· · ·
+ ≤ n(n + 1) steps. Since we can apply the greedy algorithm to 1⊕ f when f is
1-CM, we then have proved the theorem. ��

According to Theorem 7, the greedy algorithm is always fast. The algorithm
guarantees the resulting function must be an annihilator although it may not
be best (with minimum degree). The greedy algorithm will be refined in the
Appendix.

10 Conclusions

We have argued that in algebraic attacks, boolean functions f may be replaced by
their algebraic complements f c. We then have introduced the extended algebraic
immunity AI∗(f) = min{AI(f), AI(f c)}. We prove that 0 ≤ AI(f) − AI∗(f)
≤ 1. We have also indicated that AI(f)−AI∗(f) = 1 holds for a large number of
boolean functions. Therefore the difference between AI(f) and AI∗(f) cannot be
ignored in algebraic attacks. We have established a relation between annihilators
of boolean functions and traversals of hypergraphs. The relation allows us to find
annihilators in a fast and effective way provided ANF of the function is known.
In addition, we establish a new upper-bound on AI∗(f). The new upper-bound
and the algorithms together show that the new approach is helpful in analysis
of the extended algebraic immunity AI∗(f) and in finding annihilators.
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Appendix: Multiple Greedy Algorithms for Annihilators

Throughout this section, we discuss only f and symmetrically we can do the same
for f c. It is noted that 1⊕f is an annihilator of f where f is any boolean function.
Thus, if τ(f) > deg(f) then the greedy algorithm will fail. For this reason, in this
section we strengthen the greedy algorithm in order to obtain better annihilators.
By the improved algorithm, we may obtain a better annihilator of f even τ(f) >
deg(f), �n/2�.

Let f boolean function on (GF (2))n (0-CM or 1-CM), X = {x1, . . . , xn} be
the set of variables. Applying greedy algorithm, described in Section 9 to f or
1⊕f , according to f is 0-CM or 1-CM, we obtain a transversal T = {xj1 , . . . , xjt}
of ℵ(f) or ℵ(1 ⊕ f), where xj1 is produced earliest in the algorithm, xj2 is
produced second earliest, . . ., xjt is produced last. Based on the transversal T ,
we next present the Multiple greedy algorithm in a series of notations.

Notation 4. We define a function Dβ on (GF (2))k, where 1 ≤ k ≤ r =
min{ 1

4n, t − 2}, as follows: Dβ(y) = (1 ⊕ b1 ⊕ xj1 ) · · · (1 ⊕ bk ⊕ xjk
) where y =

(xj1 , . . . , xjk
), β = (b1, . . . , bk), {xj1 , . . . , xjk

} ⊆ T = {xj1 , . . . , xjt}. We define
fβ(z) = f(x)|xj1=b1,...,xjk

=bk
where z = (xi1 , . . . , xin−k

) satisfying {xj1 , . . . , xjk
}

∪ {xi1 , . . . , xin−k
} = {x1, . . . , xn} with i1 < · · · < in−k.

It is easy to see that

f(x) =
⊕

β∈(GF (2))k

Dβ(y)fβ(z) (4)

Due to the greedy algorithm, it should be noted that y = (xj1 , . . . , xjk
) does not

necessarily imply j1 < · · · < jk.
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Definition 5. (4) is called the kth greedy decomposition of f with respect the
transversal T = {xj1 , . . . , xjt} of ℵ(f). Each fβ(z) is called a subfunction of f
in the greedy decomposition (4).

Notation 5. Let k be a fixed integer with 1 ≤ k ≤ r, where r = min{ 1
4n, t− 2}

and t = #T . We write the kth greedy decomposition of f in the form (4). If fβ(z)
is a non-constant function, we apply the greedy algorithm to fβ(z) (when fβ(z) is
0-CM) or 1⊕fβ(z) (when fβ(z) is 1-CM), and then we obtain the transversal Tk,β

of fβ(z) or 1⊕ fβ(z). Clearly Tk,β is a subset of {xi1 , . . . , xin−k
}. We define an

integer ρk,β =
{

0 if fβ(z) is the constant one or zero
min{deg(fβ(z)), #Tk,β} otherwise .

We also define an integer ρk = min{ρk,β|β ∈ (GF (2))k}.

Notation 6. If exists some k such that ρk = 0, we define k∗ = min{k|ρk = 0}.
In this case, by definition, there exists some βj∗ ∈ (GF (2))k∗

such that fβj∗ (z) is
the constant zero or one. Otherwise, ρk > 0, k = 1, . . . , r, we define k∗∗ + ρk∗∗=
min{k + ρk|1 ≤ k ≤ r}, where r = min{ 1

4n, t− 2} and t = #T . In this case, by
definition, there exists some βj∗∗ ∈ (GF (2))k∗∗

such that ρk∗∗,βj∗∗ = ρk∗∗ .

Theorem 8. Let f be a function on (GF (2))n (0-CM or 1-CM).

(i) if the first case (in Notation 6) occurs then Dβj∗ (y) is an annihilator of f
or 1⊕ f , where deg(Dβj∗ ) = k∗,

(ii) if the second case (in Notation 6) occurs then there exists a function g on
(GF (2))n−k∗∗

such that Dβj∗∗ (y)g(z) is an annihilator of f or 1⊕ f , where
deg(g) = min{deg(fβj∗∗ (z)), #Tk,βj∗∗ },

(iii) both annihilators in (i) and (ii) have a degree is less than or equal to t = #T .

Proof. We first prove (i) of the theorem. It is noted that Dβ′(y) · Dβ′′(y) is
identical with the constant zero when β′ �= β′′. Therefore, according to (4),
we know that Dβj∗ (y)f(x) = Dβj∗ (y)fβj∗ (z). Thus, if fβj∗ (z) is the constant
zero then Dβj∗ (y) is an annihilator of f , and, if fβj∗ (z) is the constant one
then Dβj∗ (y) is an annihilator of 1 ⊕ f . We next prove (ii). Similarly to the
proof of (i), we have Dβj∗∗ (y)f(x) = Dβj∗∗ (y)fβj∗∗ (z). When #Tk∗∗,βj∗∗ <
deg(fβj∗∗ (z)), there exists an annihilator g of fβj∗∗ (z) or 1 ⊕ fβj∗∗ (z), where
the annihilator g is corresponding to (see Definition 4) the transversal Tk∗∗,βj∗∗ .
Therefore Dβj∗∗ (y)g(z)f(x) = Dβj∗∗ (y)g(z)fβj∗∗(z)= 0 if fβj∗∗ (z) is 0-CM, or,
Dβj∗∗ (y)g(z)f(x) = Dβj∗∗ (y)g(z)fβj∗∗(z)= Dβj∗∗ (y)g(z), i.e., Dβj∗∗ (y)g(z)(1⊕
f(x)) = 0 if fβj∗∗ (z) is 1-CM. This proves that Dβj∗∗ (y)g(z) is an annihilator
of f or 1⊕ f . When #Tk∗∗,βj∗∗ ≥ deg(fβj∗∗ (z)), we set g = 1⊕ fβj∗∗ (z). There-
fore Dβj∗∗ (y)g(z)f(x) = Dβj∗∗ (y)g(z)fβj∗∗(z) that is identical with the constant
zero. This proves that Dβj∗∗ (y)g(z) is an annihilator of f . We have completed the
proof of (ii). We finally prove (iii). The degree of annihilator in (i) is equal to k∗.
According the the multiple greedy algorithm, k ≤ r where t = #T . The degree
of annihilator in (ii) is equal to k∗∗+ρk∗∗,βj∗∗≤ k∗∗+#Tk∗∗,βj∗∗ ≤ k∗∗+#Tk∗∗,0.
Recall that T is the transversal of ℵ(f). Therefore k∗∗+#Tk∗∗,0 = #T . We have
proved (iii). ��
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Definition 6. We call the algorithm in this section the multiple greedy algo-
rithm. To avoid confusion, we call the algorithm in Section 9 the single greedy
algorithm.

Theorem 9. Let f be a function on (GF (2))n (0-CM or 1-CM). Let T with
#T = t be a transversal of f by the Greedy Algorithm. Then an annihilator of
f or 1 ⊕ f can be computed by using the multiple greedy algorithm in 2r+1 · n2

computing operations, where r = min{ 1
4n, t− 2} and t = #T .

Proof. Due to the multiple greedy algorithm, for each k with 1 ≤ k ≤ r, we do
single greedy algorithm for at most 2k functions on (GF (2))n−k. According to
Theorem 7, the computing operations is at most

∑r
k=1 2k · (n− k)(n− k + 1) ≤

n2
∑r

k=1 2k ≤ n2 · 2r+1. ��

The following statement is obvious.

Corollary 4. In the multiple greedy algorithm, for any k with 1 ≤ k ≤ r, where
r = min{ 1

4n, t − 2} and t = #T , and any β ∈ (GF (2))k, we have AI(f) ≤
k + AI(fβ) ≤ k + τ(fβ).

According to Corollary 4, any degenerate subfunction is not desirable.
The main difference between the multiple and single greedy algorithms is

that the multiple greedy algorithm contains many single greedy algorithms. It is
noted that many subfunctions fβ are involved in the algorithm. This is helpful for
the algebraic attacks because the subfunctions have less variables than original
function f and some subfunctions may have a low degree or a small transversal
number or satisfy the König property. Of course, The multiple greedy algorithm
needs more computing times than the single greedy algorithm, but it results in
better annihilators.

Note that Proposition 1 of [8] or Proposition 2 of [2] previously indicated that
the algebraic immunity of a boolean function will be low if it has a subfunction
of low degree. The main difference between the multiple greedy algorithm and
the previous result is that the formula (4) is based on a transversal T of f ,
produced by the single greedy algorithm. Also the single Greedy Algorithm is
further applied to each subfunction fβ in (4).

By the same reasoning, we can apply the multiple Greedy Algorithm to f c

and obtain an annihilator of f c. Comparing the degree of the annihilator of f c

by the multiple greedy algorithm, to the degree of the annihilator of f by the
same algorithm, we choose one with smaller degree between the two annihilators
as the final result.
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Abstract. Today, RSA is one of the most popular public-key crypto-
system in various applications. In this paper, we present a high-speed
RSA crypto-processor with modified radix-4 Montgomery multiplication
algorithm and Chinese Remainder Theorem (CRT). Our design takes
0.84M clock cycles for a 1024-bit modular exponentiation and 0.25M
clock cycles for two 512-bit exponentiations. Using 0.18 um standard
cell library, the processor achieves 365Kbps for a 1024-bit exponentia-
tion and 1,233Kbps for two 512-bit exponentiations at a 300MHz clock
rate. For the high performance RSA crypto-system, the processor can
also execute modular reduction, which is essential for calculating the
Montgomery mapping constant and the modularly reduced ciphertext in
CRT technique.
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1 Introduction

RSA [1] was, and still is the most widely used public-key cryptosystem. In the
RSA cryptosystem, both encryption and decryption use modular exponentia-
tion, which can be done by a sequence of modular multiplications. Therefore,
the modular multiplication is the major factor which determines the performance
of the RSA crypto-system. Many modular multiplication algorithms have been
proposed in the past [2,3,4]. The Montgomery multiplication algorithm [4,5] is
one of the most efficient algorithms. Montgomery’s algorithm replaces trial di-
vision by the modulus with a series of additions and divisions by a power of
two, thus it is well suited for hardware implementation. However, the key size in
a RSA crypto-system is generally 512∼1024 bits to provide adequate security,
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which means a high throughput is difficult to achieve. To improve the perfor-
mance of modular multiplication, numerous high-radix modular multiplication
algorithms have been proposed [6,7,8,9]. In high-radix algorithms, multi-bits of
multiplicand are processed at one clock cycle, and thus the number of itera-
tions can be reduced. Another way to speed up the RSA crypto-system is to
use the Chinese Remainder Theorem (CRT) technique for decryption [10,11,12].
CRT is a divide-and-conquer method, which makes the RSA decryption almost
4 times faster, if two half-size exponentiations are calculated in parallel. Usually
there are two implementation styles for Montgomery multiplication algorithm.
One is to use Carry Save Adder(CSA) to avoid carry propagation [13,14,15] and
the other is using the systolic-array element which mainly consists of 1-bit full
adder [16,17,18,19]. For radix-2 multiplication, both methods are adequate for
high-speed clock implementation, because the first method does not suffer carry
propagation and the second method uses the pipelining structure based on 1-bit
full adders. However, for high-radix multiplication, in CSA style implementation,
it is not possible to directly determine the least significant bits of the interme-
diate result in carry redundant form, and also in systolic-array implementation,
it is difficult to control multi-bits in 1-bit based pipelining structure and avoid
latency problem.

In this paper, we introduce an architecture of a high-speed RSA crypto-
processor based on modified radix-4 Montgomery multiplication algorithm and
CRT. Using CSA, we design a radix-4 modular multiplier which is also suitable
for CRT, and a modular reducer which can be used to compute the Montgomery
domain mapping constant and the modularly reduced ciphertext in CRT. We
also present implementation results and performance analysis of our results.

The rest of this paper is organized as follows. In section 2, we describe some al-
gorithms for our crypto-processor. Section 3 describes the hardware architectures
of our RSA cryptosystem. In section 4, we provide the implementation results
and some comparisons with previously reported cases. Section 5 concludes the
paper with some final remarks.

2 Algorithms

2.1 Montgomery’s Modular Multiplication

Clearly, modular exponentiation is the main operation of the RSA algorithm.
For modular exponentiation, a sequence of modular multiplications can be used.
If the n-bit exponent e=

∑n−1
i=0 ei2i, ei ∈ 0, 1, exponentiation M e is then,

M e = M
n−1
i=0 ei2

i

= M2n−1en−1 · · ·M2e1M e0 . (1)

Therefore, if we use multiplication instead of squaring, this can be done by a se-
quence of multiplications. This is known as the binary exponentiation algorithm
and there are two binary methods; Left-to-Right(LR) and Right-to-Left(RL)
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method according to the scanning direction of the bits of e. Both of them re-
quire n iterations for an n-bit exponent and each iteration contains two modular
multiplications.

For three n-bit inputs A, B and N , radix-2 Montgomery’s modular multipli-
cation [4,5] is shown as follows.

Algorithm 1. Radix-2 Montgomery multiplication

input: A =
∑n−1

i=0 ai2i, B =
∑n−1

i=0 bi2i and N =
∑n−1

i=0 ni2i

output: ABR−1 mod N , where R = 2n mod N

1. S = 0
2. for i = 0 to n− 1 do begin
3. qi = S + Bai mod 2
4. S = (S + Bai + qiN)/2
5. end
6. if (S ≥ N) S = S −N
7. return S

In order for the algorithm 1 to operate correctly, the condition gcd(N, R) =
gcd(N, 2n) = 1 must be satisfied. As N is the product of two large prime num-
bers, N is an odd number and this condition is always true. The most time
consuming part of the algorithm is the calculation of S given by the three input
addition(step 4). It comes from the carry propagation of the very large operand
additions and this can be avoided by using CSA for additions. The function of
CSA is to add three n-bit inputs X , Y and Z to produce two outputs C and S
as results such that C + S = X + Y + Z. The ith bit of sum si and the i + 1th
bit of carry ci+1 is calculated by the following functions with ith bits of three
inputs, xi, yi, zi,

si = xi ⊕ yi ⊕ zi

ci+1 = xiyi ∨ yizi ∨ zixi, c0 = 0.
(2)

To improve the performance of modular multiplication, numerous high-radix
modular multiplication algorithms have been proposed [6,7,8,9]. Hong et al. pro-
posed radix-4 Montgomery modular multiplication algorithm based on Booth’s
multiplier [9]. With Booth’s Recoding scheme, their radix-4 algorithm uses the
multiples of B and N , {±B,±2B} and {±N, 2N}, instead of {B, 2B, 3B} and
{N, 2N, 3N} which need higher hardware cost. However, for the case of radix-4
multiplication, we can not do mod 4 or division by 4 before the actual addition
of C and S. Therefore, using 2-bit additions, we rearranged Hong et al.’s algo-
rithm for the CSA style implementation. Let BR((a2i+1, a2i, a2i−1), B) denote
the radix-4 Booth’s recoding with inputs (a2i+1, a2i, a2i−1) and B, which out-
put negB and Bi as table 1. The modified radix-4 Montgomery multiplication
algorithm with CSA is shown in algorithm 2.
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Table 1. Radix-4 Booth’s recoding rules in algorithm 2

ai+1 ai ai−1 negB Bi ai+1 ai ai−1 negB Bi

0 0 0 0 0 1 0 0 1 ¬2B
0 0 1 0 B 1 0 1 1 ¬B
0 1 0 0 B 1 1 0 1 ¬B
0 1 1 0 2B 1 1 1 0 0

Algorithm 2. Modified Radix-4 Booth Montgomery Multiplication
using CSA, R4MM(A, B, N)

input: A =
∑n

i=0 ai2i, B =
∑n

i=0 bi2i, N =
∑n−1

i=0 ni2i, ai, bi, ni ∈ {0, 1}
output: ABR−1 mod N , where R = 2�(n+3)/2�

1. C = 0, S = 0, a−1 = 0, cin = 0
2. for i = 0, 1, 2, 3, ..., �(n + 3)/2� − 1 do begin
3. (negB, Bi) = BR((a2i+1, a2i, a2i−1), B)
4. (C, S) = CSA(S, C, Bi)
5. (ti1, ti0) = ((s1, s0) + (c1, negB) + cin) mod 4
6. negN = (ti1 = n1)
7. if (ti0 = 0) do begin
8. if (ti0 = 0) Ni = 0
9. else Ni = 2N
10. end
11. else do begin
12. if (negN = 1) Ni = ¬N , C = C + negN

13. else Ni = N
14. end
15. (C, S) = CSA(S, C, Ni)
16. cin = ((s1, s0) + (c1, negB) + cin)/4
17. (C, S) = (C/4, S/4)
18. end
19. S = C + S
20. return S

In this algorithm, (C, S) = CSA(X, Y, Z) represents a CSA addition of three
inputs X , Y and Z, and the two outputs of the addition are saved in C and
S respectively. Unlike Carry Propagation Adder (CPA), CSA does not have a
separate carry-input, hence it is impossible to calculate negative multiples of 2’s
complement numbers, B and N with CSA directly. Therefore, as table 1, for
positive Booth’s recoding cases, negB is 0 and Bi is B or 2B, while in negative
cases, negB is 1 and Bi is ¬2B or ¬B, the bit-wise inverses of B and 2B. In the
same manner, Ni is also represented by negN and ¬N .

Note that a 2-bit addition of two 2-bit inputs and 1-bit carry input is per-
formed in step 5, and operation of mod 4 is simply done by taking 2-bit sum
output as a result for the value of (ti1, ti0) which is used for determining Ni. In
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steps 6∼15, Ni is selected by the condition of the values, (ti1, ti0) , (n1, n0) and
then added to the intermediate value, (C, S). The calculation of C + negN in
step 12, can be easily done by substituting the Least Significant Bit (LSB) of C,
(which is always 0) by negN . Also, another 2-bit addition is used in step 16, and
division by 4 is simply done by only taking the carry output result to update
cin for the next iteration. Now that the two least significant bits of the sum of
the intermediate value, in step 17 are 0, division by 4 is just 2-bit right shift of
C and S. As a result, using two 2-bit additions and carry update, we can easily
implement radix-4 Booth Montgomery multiplier based on CSA.

2.2 Modular Exponentiation and Chinese Remainder Theorem

As mentioned before, modular exponentiation can be done by a sequence of mod-
ular multiplications. L-R modular exponentiation algorithm using Montgomery
multiplication is shown in algorithm 4, where R4MM() denotes the radix-4
Montgomery Multiplication(algorithm 2).

Algorithm 3. L-R Montgomery Exponentiation

input: M =
∑n−1

i=0 mi2i, N =
∑n−1

i=0 ni2i, e =
∑n−1

i=0 ei2i, mi, ei, ni ∈ {0, 1},
and K = R2 mod N = 4�(n+3)/2� mod N

output: M e mod N

1. M = R4MM(M, K, N), P = R4MM(K, 1, N)
2. for i = n− 1, n− 2, ..., 0 do begin
3. P = R4MM(P, P, N)
4. if (ei=1) P = R4MM(P, M, N)
5. end
6. P = R4MM(P, 1, N)
7. if (P < 0) P = P + N
8. return P

By letting K = R2 mod N = 4�(n+3)/2� mod N , the first phase (step 1) calcu-
lates residues with respect to R of initial values M and 1. Once the value of key
N is given, the value K remains unchanged. It is thus necessary to pre-compute
K before the modular exponentiation. The main part of the computation is a
loop in which modular squares and multiplications are performed(steps 2∼5).
In step 6, the result of the loop is switched back from the residue domain to
the normal representation of numbers. Note that, since we use algorithm 3 for
R4MM(), the intermediate results of M and P are in the range [−N, N) during
the entire exponentiation process, thus we only convert the final result in step 7
to the range [0, N) by adding N to P if P < 0.

The RSA decryption and signature operation can be speeded up by using the
CRT [11,12]. Since the modulus N is equivalent to P × Q, the computation of
Cd mod N can be partitioned into two smaller parts and computed by CRT as
follows.



86 B. Koo et al.

Algorithm 4. RSA Decryption with CRT

input: C, P , Q, Q−1, dP = d mod (P -1), dQ = d mod (Q-1)
output: M = Cd mod N

1. CP = C mod P
2. CQ = C mod Q

3. MP = CdP

P mod P

4. MQ = C
dQ

Q mod Q

5. h = Q−1(MP −MQ) mod P
6. M = MQ + hQ.
7. return M

It is obvious to see that the initial reductions of the ciphertext C(steps 1∼2)
and the Chinese recombination(steps 5∼6) do not cause significant computa-
tional cost compared to the modular exponentiations in steps 3∼4. The two
n/2-bit exponentiations are independent from each other, thus if calculated in
parallel, the calculation time is about 4 times faster than that of the n-bit mod-
ular exponentiation which is used in non-CRT based decryption. This speedup
comes from the half length of both, the exponent and the modulus.

2.3 Modular Reduction

For RSA computation based on Montgomery’s modular multiplication and CRT
technique, modular reduction is requested for calculating K = R2 = 4�(n+3)/2�

in algorithm 3, and CP = C mod P and CQ = C mod Q in algorithm 4. The
mapping constant K can be pre-computed for every public key N , however this
requires a lot of spaces of memory. Moreover the modularly reduced ciphertexts
CP and CQ can not be determined and pre-computed until the ciphertext C is
received. Thus it is desirable to implement a modular reduction hardware for
the high speed RSA crypto-system.

In 1998, Koc et al. proposed a fast modular reduction algorithm which uses
CSA and the sign estimation technique [21]. This algorithm is very efficient
for high speed hardware implementation because it uses CSA to avoid carry
propagation and also only a 4-bit addition is required to estimate the sign of the
intermediate result. However, Koc et al. assumed that the modulus N requires
exactly n bits to represent it, i.e. 2n−1 ≤ N < 2n. Hence, for arbitrary n-bit N , it
is required to move the sign estimation position depending on the MSB position
of N . This could be very inefficient in hardware implementation because the
modulus N is usually of hundreds or thousands in bits in a RSA crypto-system.

Let us assume X = αN + β (α ≥ 0 , 0 ≤ β < N), then

X2l mod N2l = (αN + β)2l mod N2l = β2l. (3)

Now, the reduction result X mod N(=β) can be just obtained by l-bit right shift
of β2l. Therefore, adding shift and count operations to the original algorithm,
we can simply make the algorithm to work for arbitrary n-bit N as follows.
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Algorithm 5. Modular Reduction with Sign Estimation
for arbitrary n-bit N

input: X =
∑k+n−1

i=0 xi2i, N =
∑n−1

i=0 ni2i

output: X mod N

1. S = 2−k−1X , C = 0, l = 0
2. while (Nn−1 = 0) do begin
3. N = 2N , l = l + 1
4. end
5. for i = 0 to k + l do begin
6. if ES(C, S)=(+) (C, S) = CSA(2S, 2C,−N)
7. elseif ES(C, S)=(-) (C, S) = CSA(2S, 2C, N)
8. else (C, S) = CSA(2S, 2C, 0)
9. end
10.S = C + S
11.if (S < 0) S = S + N
12.while (l �= 0) do begin
13. S = S/2, l = l − 1
14.end
20.return S

In this algorithm, ES(C, S) denotes Koc et al.’s main idea, the estimated sign
function which uses only 4-bit addition to estimate the sign of the intermediate
result. For a more detailed explanation, please refer to [21]. Steps 2∼4 (shift
left of N and count up of l operations) and steps 12∼14 (shift right of S and
count down of l operations) are addintionally added to the original algorithm,
and also the number of iterations has been changed to k + l + 1 from k + 1. The
reduction iteration number k + l + 1 comes from the fact that the input number
X is (n + k)-bits and the MSB l-bits of the n-bit number N are all ‘0’s.

3 Architecture

3.1 Modular Multiplier

A fully parallel architecture has been designed to implement Montgomery mod-
ular multiplier using CSA and Booth’s algorithm. Fig. 1 illustrates the archi-
tecture of the radix-4 Montgomery modular multiplier based on algorithm 2. It
mainly consists of an (n + 2)-bit CSA, an (n + 3)-bit CSA, two 2-bit adders, a
BR(Booth Recoding) block, a RT(Reduction Table) block, and three registers
(A reg, C reg, S Reg). The input A is stored in the register A reg at first and
right shifted by 2-bits in each clock cycle during the multiplication. The BR
block generates the values negB and Bi from the inputs (a2i+1, a2i, a2i−1) and
B, and also the RT block generates the values negN and Ni from (ti1, ti0) and
N . The two inputs of the multiplier, A and B are (n + 1)-bit size each because
these are 2’s complement values, and another input N is n-bit positive integer.
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The value Bi generated by the BR block is one of {−2B,−B, 0, B, 2B}, thus
the upper CSA is (n + 2)-bit size and the lower CSA is 1-bit sign extended size
i.e., (n + 3)-bit. The adder 1 calculates the 2-bit value (ti1, ti0) which is used as
the input of the RT block and the adder 2 generates the value cin for the next
iteration.
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Fig. 1. The basic architecture of radix-4 modular multiplier

After �(n + 3)/2� + 1 clock cycles, the result of carry save representation,
C and S are saved in C reg and S reg each. The w-bit adder can be used for
summation of C and S in w-bits by w-bits to generate the final multiplication
result. Therefore the radix-4 modular multiplier requires �(n + 3)/2� + �(n +
2)/w�+ 1 clock cycles for an n-bit multiplication.

As shown in Fig. 1, the critical path of the multiplier is “CSA → adder 1 →
RT → CSA → adder 2”. Because the adder 1 does not calculate carry output,
the delay of that is only “Full Adder(FA)+XOR”. Also, as N is an odd number,
which means LSB is always 1, the LSB of Ni, ni0 can be directly determined by
the values negN and ti0 i.e., ni0 = ¬N ∧ ti0, thus the delay of the RT block is
“XOR+AND”. Therefore the critical path delay of the proposed radix-4 multi-
plier is “4FAs+ 2XORs+ AND” with which we can expect tens or hundreds of
MHz clock speed.

As explained above, two n/2-bit exponentiations are the heaviest computa-
tions in RSA decryption with CRT and if calculated in parallel, the decryption
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time is about 4 times faster than that of the normal n-bit exponentiation. Be-
cause CSA has no carry propagation, it is easy to make a multiplier of our
architecture to be able to calculate n-bit modular multiplication or two n/2-bit
multiplications in parallel selectively. Therefore, we finally design a radix-4 multi-
plier which can support CRT technique. The designed multiplier treats the input
A(B) as an (n+2)-bit number or the concatenation of two independent (n/2+1)
numbers selectively. Also N can be treated as the concatenation of two n/2-bit
numbers P and Q. As a result, our multiplier requires �(n+3)/2�+�(n+2)/w�+1
clock cycles for a n-bit multiplication and �(n/2 + 3)/2� + �(n/2 + 2)/w� + 1
cycles for two n/2-bit multiplications.

3.2 Modular Reducer

We also present an architecture of a high speed modular reduction hardware
based on algorithm 5. Fig. 2 illustrates the architecture of the modular reducer.
For arbitrary (n+k)-bit and n-bit positive integers X and N , this hardware can
calculate X mod N , and as depicted in Fig. 2, it consists of an (n + 2)-bit CSA,
a �log2n�-bit up/down counter, a 4-bit adder, four registers(N reg, C reg, S reg,
L reg) and some control logics.
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Fig. 2. The architecture of modular reducer

Once the operation starts, the N reg register which stores the input N is left
circular shifted until the MSB of the register is 1 and the �log2n�-bit value which
is stored in the L reg register is up-counted from 0, simultaneously. The two
registers S reg and C reg, store the values 2k−1X and 0 each at first, and then
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the intermediate values of CSA addition are saved during (k + l + 1) iterations.
Like the case of the modular multiplier, a w-bit adder is used for summation of C
and S, and the result is saved in C reg. Also if the MSB of the summation result
is 1, then the addition of the value in register N reg is done again. The final
result is calculated and saved in C reg register after the value in L reg register is
down-counted until it is 0, and C reg is right shifted simultaneously. In addition,
the 4-bit adder is used to calculate the 4-bit value Y which is used for sign
estimation and the value 2C + 1 is directly determined because the LSB of 2C
is always 0. As a result, when X is (n + k)-bits, N is n-bits and the MSB l-bits
of N are all 0’s, the designed hardware requires 2l + (k + l + 1) + 2�(n + 2)/w�
clock cycles for a modular reduction in the worst case.

3.3 RSA Crypto-processor

Fig. 3 illustrates the overall architecture of a high speed RSA cryptosystem
we designed. It mainly consists of a radix-4 modular multiplier and a modular
reducer(Fig. 2), thus can execute modular exponentiation or modular reduction.
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Fig. 3. The overall architecture of proposed RSA crypto-system

When the signal sel MR is 0, the processor operates modular exponentiation
based on L-R Montgomery modular exponentiation as algorithm 4. In this case,
the registers N reg, M reg and E reg store the values N , M , e respectively,
and the register R reg stores the mapping constant K at the start and the final
result at the end of calculation. The processor uses the radix-4 modular multiplier
which supports CRT explained above, thus it executes an n-bit exponentiation if
the signal sel CRT is 0, and two n/2-bit exponentiations in parallel when sel CRT
is 1. Because the L-R algorithm is used, the number of modular multiplication is
about 2n(or n) for the worst case and 3/2n(or 3/4n) for average cases. Hence the
number of clock cycles of modular exponentiation is approximately 1.5(n2/2 +
n2/w) for an n-bit operation and for 1.5(n2/8+n2/4w) for n/2-bit operations on
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average. Furthermore if sel MR is 1, the processor can execute modular reduction
with the modular reducer as in Fig. 2. In this case the two registers M reg and
E reg store the value X for area efficiency, thus the size of X is 2n + 2 bits, and
the result of calculation is saved in the register R reg. When the MSB of N is
1(l = 0), the mapping constant K is calculated in n + 3 + 2�(n + 2)/w� clock
cycles, and if the MSB of P (or Q) is 1(l = n/2), modularly reduced ciphertext
Cp(or Cq) is calculated in 1.5n + 3 + 2�(n + 2)/w� clock cycles.

4 Result and Performance

Our RSA crypto-processor has been implemented with the Samsung 0.18um
CMOS standard cell library. The synthesis result shows that the critical path
delay is about 3.0ns, thus we can expect the processor to operate at a 300MHz
clock rate. We use a 32-bit(w=32) Carry Look-ahead Adder(CLA) for high speed
operation, and thus the processor needs about 0.84M clock cycles for one 1024-
bit modular exponentiation and about 0.25M cycles for two 512-bit modular
exponentiations. At a 300MHz clock, the throughput is 365Kbps and 1.233Mbps
in each case.

Table 2. Performance comparison of 1024-bit RSA impelementations

Tech Gate Freq No. of Op. time Baud rate CRT Mod
(um) count (Mhz) clocks (ms) (Kbps) Reduc.

Kwon [13] 0.5 156K 50 n2 43 45 no no
Blum [6] FPGA - 45 n2/2 12 83 no no
Cho [22] - 230K 40 n2/2 13 77 no no
McIvor [23] FPGA - 97 n2/4 2.73 375 yes no
Ours 0.18 192K 300 1.5n2/8 0.83 1,233 both yes

Table 2 shows the performance result comparison with those recently reported
in the literature. With the results of the table, our design is the fastest RSA
crypto-processor published to date. The implementation by Kwon et al. [13]
simply uses the basic radix-2 modular multiplier based on CSA, thus its per-
formance is not outstanding. Blum et al. [6] proposed the radix-16 modular
multiplier on FPGA to reduce the clock cycles, but they used the dedicated
memory in FPGA to precompute and store the multiples of B and N . Cho et
al. [22] used the radix-4 multiplier based on CSA and sign estimation technique.
However their design uses four n-bit CSAs, thus requires large hardware area.
McIvor et al. [23] proposed the modular multiplier based on carry redundant rep-
resentation. Their design avoids conversion additions at each iteration by using
three n-bit CSAs, thus also requires large hardware area, for example 165K for
an 1024-bit modular multiplier. Actually, the performance of our implementa-
tion in table 2 is for the average case. For the worst case, the baud rate decreases
to 274Kbps for non-CRT and 930Kbps for CRT, however our implementation
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is still the fastest one. Moreover, if we use two multipliers to do the squaring
and multiplication in parallel by R-L exponentiation algorithm, the performance
will be improved by 50%. Furthermore, our design can execute both non-CRT
and CRT exponentiations selectively, whereas others can execute only one of
them. It can also execute modular reduction operation, X mod N for arbitrary
2050-bit and 1024-bit positive integers X and N . Using this function, the 1024-
bit mapping constant K can be calculated in 1,059 clock cycles and the 512-bit
modularly reduced ciphertext Cp(or Cq) calculated in 1,602 clock cycles if the
MSBs of N and P (or Q) are all 1’s. Therefore, our design is eminently suitable
for high speed RSA cryptosystem.

5 Conclusions

We have presented an architecture of a high-speed RSA crypto-processor based
on modified radix-4 Montgomery modular multiplication algorithm and CRT.
The implementation of a 1024-bit RSA crypto-system with a 0.18um CMOS
standard cell library has been done. The number of clock cycles is 0.84M for non-
CRT and 0.25M for CRT style 1024-bit modular exponentiation. The comparison
of our implementation with other designs in table 2 shows that the performance
of our design is the fastest reported to date in the literature. Our design can also
execute modular reduction operation, X mod N for arbitrary 2050-bit and 1024-
bit positive integers X and N , which can be used to calculate the Montgomery
mapping constant and the modular reduction cipertext in the CRT technique.
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Abstract. A square root (SQRT) algorithm in GF (pm) (m = r0r1 · · ·
rn−12

d, ri: odd prime, d > 0: integer) is proposed in this paper. First,
the Tonelli-Shanks algorithm is modified to compute the inverse SQRT

in GF (p2d

), where most of the computations are performed in the corre-

sponding subfields GF (p2i

) for 0� i�d−1. Then the Frobenius mappings
with an addition chain are adopted for the proposed SQRT algorithm, in
which a lot of computations in a given extension field GF (pm) are also
reduce to those in a proper subfield by the norm computations. Those
reductions of the field degree increase efficiency in the SQRT implemen-
tation. More specifically the Tonelli-Shanks algorithm and the proposed
algorithm in GF (p22), GF (p44) and GF (p88) were implemented on a
Pentium4 (2.6 GHz) computer using the C++ programming language.
The computer simulations showed that, on average, the proposed algo-
rithm accelerates the SQRT computation by 25 times in GF (p22), by 45
times in GF (p44), and by 70 times in GF (p88), compared to the Tonelli-
Shanks algorithm, which is supported by the evaluation of the number
of computations.

1 Introduction

The task of computing square roots (SQRTs) in a finite field GF (pm) is a prob-
lem of considerable importance. Why is the SQRT important? Of course, we may
simply be interested in the problem because it’s there, but there are also appli-
cations to cryptography [1], [2]. In this paper, an efficient algorithm is proposed
to compute the SQRT in GF (pm). First, however, we give a short overview of
several SQRT algorithms in a prime field GF (p).

In order to find the values of z in z2 =x for a given square x∈GF (p), most of
known efficient methods are equivalent to or use the same basic ideas as either
the Tonelli-Shanks [3] or the Cipolla-Lehmer algorithm [4]. The Cipolla-Lehmer
algorithm has the disadvantage that one has to require a quadratic non-residue
(QNR) that depends on both p and x, while the QNR needed by the Tonelli-
Shanks algorithm can be reused for different x. This study is based on the
Tonelli-Shanks algorithm.

The Tonelli-Shanks algorithm was originally devised in GF (p), but can easily
be applied in GF (pm) by simply replacing the operations in GF (p) with those in

M.S. Rhee and B. Lee (Eds.): ICISC 2006, LNCS 4296, pp. 94–106, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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GF (pm). Note that the operations in GF (pm) are more expensive than those in
GF (p) for m>1. For example, a multiplication in GF (pm) at least requires m2

multiplications in GF (p) by using the schoolbook method. Therefore, it costs
too much to directly apply the Tonelli-Shanks algorithm in extension fields.
This is a big motivation of the authors to develop an efficient SQRT algorithm
in extension fields GF (pm).

An extension field GF (pm) provides us flexibility to choose system parameters,
such as characteristic p and extension degree m as well as modular polynomial.
The authors have considered the cases of m = 2d [5] and m = r2d [6], where
r is an odd number and d � 0 is an integer. However, for the application to
elliptic curve cryptosystem, we especially restricted d=1, 2 in [6]. In this paper,
we treat the general case i.e. p is an odd prime number and m has the form of
m= r0r1 · · · rn−12d, where ri is an odd prime number, and ri � rj for i� j, and
d � 0 is an integer. In what follows m = r2d (r = r0r1 · · · rn−1) without further
explanation.

The basic idea of the proposed SQRT algorithm is described as follows. If a
given element x∈GF (pm) is not a quadratic residue (QR), i.e. x has no SQRT
in the same field, then there is no need to compute its SQRTs. Before SQRT
computations, we should thus use Euler’s criterion Cm(x)=x(pm−1)/2 to identify
whether x is a QR or not, which is called QR test. Since m=r2d, the exponent
in Euler’s criterion can be factorized into

pm − 1
2

= e · p2d − 1
2

, e = 1 + p2d

+ · · ·+ (p2d

)r−1. (1.1)

So, Cm(x) can be evaluated in the following steps:

Cm(x) = x̄(p2d−1)/2, x̄ = Nm
2d(x) = xe, (1.2)

where Nm
2d(x), the norm of x with respect to the subfield GF (p2d

), is always an
element in GF (p2d

). From Eq.(1.2), i.e. x̄ = xe, we have
√

x = x(e+1)/2x̄− 1
2 . (1.3)

Based on Eq.(1.3), an efficient SQRT algorithm can be presented. In the
proposed algorithm, the SQRT algorithm presented in [5], i.e. the MW-ST al-
gorithm, is first modified to compute the inverse SQRT x̄− 1

2 in a given subfield
GF (p2d

), where most of the computations in GF (p2d

) can be reduced to those in
proper subfields GF (p2d−i

) for 1� i�d. Therefore, the number of computations
for x̄− 1

2 is far fewer than that for
√

x. In addition, not only the binary method,
but also the Frobenius mappings with an addition chain are adopted for x(e+1)/2

in Eq.(1.3). For exponentiation, we usually resort to the binary method, how-
ever, the number of computations for the Frobenius mapping φ(x) = xp is far
fewer than that for the binary method in important finite fields, such as optimal
extension fields (OEFs) [7], all one polynomial fields (AOPFs) [8] and successive
extension fields (SEFs) [9]. Thus, the square root

√
x can be efficiently computed

using the proposed algorithm.
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Throughout this paper, Am, Mm, and φm denote additions, multiplications,
and Frobenius mappings, respectively, in GF (pm), and #Am, #Mm, and #φm

denote the respective numbers of these operations.

2 QR Test

Euler’s criterion is usually used to identify whether or not a nonzero element
x∈GF (pm) is a QR:

Cm(x) = x(pm−1)/2 =

{
1, if x is a QR

−1, if x is a QNR
. (2.1)

In Eq.(2.1), x(pm−1)/2 can be directly computed by the binary method. However,
its complexity is very large for a large p and m > 1. Thus, we should present a
fast implementation method for the QR test in GF (pm).

2.1 Fast Implementation of the QR Test

Knowledge prepared for the QR Test. For simplicity without loss of gen-
erality, assume m= r̄m̄ in this section, where r̄ is an odd prime number and m̄
is a composite number or 1, and then the exponent in Euler’s criterion can be
factorized as

pm − 1
2

=
[
1 + pm̄ + · · ·+ (pm̄)r̄−1

]
· (pm̄ − 1)

2
. (2.2)

So, Cm(x) can be evaluated in the following steps:

Cm(x)=Cm̄(x̄), x̄=Nm
m̄ (x)=x1+pm̄+···+(pm̄)r̄−1

. (2.3)

Eq.(2.3) shows that Cm(x) will be reduced into Cm̄(x̄) by the norm computation
of Nm

m̄ (x). Since x is an element of an extension field GF (pm) and x̄=Nm
m̄ (x) is

an element of a subfield GF (pm̄), the number of computations for Cm̄(x̄) is thus
far fewer than that for Cm(x) i.e. C r̄m̄(x). Note that, for the larger r̄, the more
reductions in the computations can be obtained. The similar procedures can be
applied to the remaining factors of m̄. For example, the computation structures
of Cm(x) for m= 30, 60 are shown in Fig.1, in which the symbol N ·· (·) denotes
the norm computation.

For the norm computation Nm
m̄ (x), the binary method is usually used, the

number of computations of which is huge. In the present study, we therefore
adopt the Frobenius mapping for efficiency. Using the ith iteration of the Frobe-
nius mappings φ[i](x)=xpi

, Nm
m̄ (x) can be expressed as follows:

Nm
m̄ (x)=

r̄−1∏
i=0

φ[im̄](x). (2.4)
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(a) m = 30 = 2 · 3 · 5

(b) m = 60 = 22 · 3 · 5

C60(x)

N30
6 ( · ) N6

2 ( · ) C2( · )

N12
4 ( · ) C4( · )N60

12 ( · )

C30(x)x

x

Fig. 1. Some examples of the structure of Cm(x)

In what follows, for simplicity, the ith iteration of the Frobenius mapping is
regarded as the Frobenius mapping because their properties are all the same.
Since the Frobenius mapping φ[im̄](x)=xpim̄

has the linearity

φ[im̄](aξ + bζ)=aφ[im̄](ξ) + bφ[im̄](ζ), (2.5)

for ξ, ζ ∈ GF (pm) and a, b ∈ GF (p), and since any element x ∈ GF (pm) is
expressed as a linear combination of the basis, the Frobenius mapping of x can be
computed with a small number of computations when the Frobenius mappings of
the basis are easily obtained. In particular, the number of computations required
for the Frobenius mapping of the basis is negligibly small in OEFs [7], AOPFs
[8] and SEFs [9].

Moreover, in order to increase the computation efficiency of Nm
m̄ (x), we can

adopt an addition chain, which reuses the previously obtained values of the
Frobenius mappings. In the proposed addition chain, we first compute Φm

m̄ and
Φ̄m

m̄, and then multiply them together to obtain Nm
m̄ (x), where

Φm
m̄ =

(r̄−1)/2∏
i=1

φ[(2i−1)m̄](x), Φ̄m
m̄ =

(r̄−1)/2∏
i=0

φ[(2i)m̄](x). (2.6)

In fact, several addition chains can be used to compute Nm
m̄ (x). In the pro-

posed addition chain, however, we obtain and save the value of Φm
m̄ that is nec-

essary for the proposed SQRT algorithm. An example of the addition chain for
computing Nm

m̄ (x) for r̄ = m/m̄ = 11 is shown in Fig.2, where φ[im̄]( · ) de-
notes the Frobenius mapping of the input · and ⊗ denotes the multiplication in
GF (pm). If Nm

m̄ (x) is computed directly using Eq.(2.4), then 10 multiplications
and 10 Frobenius mappings are required in GF (pm). As opposed to this, using
the addition chain, only 5 multiplications and 5 Frobenius mappings are required
in GF (pm) as shown in Fig.2.

Using the Frobenius mappings with the addition chain, from analogous results
in [10], Nm

m̄ (x) requires that

#Mm =#φm =!log2(r̄)"+ w(r̄)− 1, (2.7)
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⊗

φ[2m̄](·)

x

φ[4m̄](·)

⊗

φ[4m̄](·)

⊗

φ[8m̄](·) ⊗

⊗

φ[m̄](·)

Nm
m̄ (x)

Φm
m̄

Φ̄m
m̄

Fig. 2. An example of the addition chain to compute Nm
m̄ (x) for r̄ =11

where !·" and w(·) denote, respectively, the maximum integer less than · and
the Hamming weight of ·. In the following, the expression !log2(·)"+ w (·)− 1 is
denoted as LW (·) for convenience.

Degree reduction by odd prime factors in m. In the general case of
m=r0r1 · · · rn−12d, let mn =2d and define

mj =rj · · · rn−12d, 0 � j � n− 1, (2.8)

and then we have m0 =m. Referring to Fig.1, Cm(x) can be reduced into C2d

(x̄n)
by the following norm computations x̄j+1 :=N

mj
mj+1(x̄j) with the Frobenius map-

pings

x̄j+1 = Nmj
mj+1

(x̄j) =
(rj−1)∏

i=0

φ[imj+1](x̄j) ∈ GF (pmj+1), (2.9)

where 0�j�n− 1 and x̄0 =x. When implementing the above computations, we
first use the proposed addition chain to compute Φmi

mj+1
and Φ̄mi

mj+1
, respectively,

and then multiply them together to get x̄j+1, where

Φmj
mj+1

=
(rj−1)/2∏

i=1

φ[(2i−1)mj+1](x̄j), Φ̄mj
mj+1

=
(rj−1)/2∏

i=0

φ[(2i)mj+1 ](x̄j). (2.10)

In the QR test, all the values of Φ
mj
mj+1 (0�j�n− 1) will be saved as shown in

Fig.3 because the SQRT algorithm requires them.
From Eq.(2.9), we can see that the computations in a given extension field

GF (pm), i.e. GF (pr0···rn−12
d

), can be reduced to those in proper subfields
GF (pmj ) (1 � j � n − 1) by the above norm computations. When taking the
reduction by the prime factors in m, the reason why the largest r0 is first per-
formed is that the largest computation reduction will be attained.

Degree reduction by factors 2 in m. Find an integer T � 0 and an odd
number s such that

p2d

=2T s + 1, (2.11)
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x̄s
N

mn−1
mn

Nm1
m2

Nm0
m1

x= x̄0

Φm0
m1 Φm1

m2 Φ
mn−1
mn x̄

s−1
2

· · ·

x̄1

x̄2

x̄n = x̄

x0 = x̄s

x0 ∈ ST − ST−1

?

Yes

No

QNR

QR

Fig. 3. Schematic diagram for the proposed QR test

and then the multiplicative group GF ∗(p2d

) is a cyclic group of order 2T s. There-
fore, its Sylow 2-subgroup ST is cyclic of order 2T , and there is a descending
chain of subgroups of ST

ST ⊃ ST−1 ⊃ · · · ⊃ S2 ⊃ S1 = {±1} ⊃ S0 ={1}. (2.12)

For any QNR c in GF (pm), c̄ = ce must be a QNR in GF (p2d

), where e is
given by Eq.(1.1). It follows that ST of order 2T is generated by c0 :=(c̄)s, ST−1

of order 2T−1 is generated by c1 := (c0)2, and in general, ST−k of order 2T−k is
generated by ck :=(ck−1)2 for k=1, · · · , T . For 1�k�d− 1, we have

ck∈ST−k−ST−k−1⊂GF (p2d−k

). (2.13a)

For d�k�T − 2, we have

ck∈ST−k − ST−k−1⊂GF (p), when 4 |(p− 1), (2.13b)

or

ck∈ST−k − ST−k−1⊂GF (p2), when 4 �(p− 1). (2.13c)

For k=T − 1, we have

cT−1∈S1 − S0 = {−1}⊂GF (p). (2.13d)

Decision of QR in GF (pm). In the conventional QR test, for a nonzero
element x∈GF (pm), we should directly compute Cm(x)=x(pm−1)/2 and identify
its result is 1 or −1. In the proposed QR test, the computation of Cm(x) will be
reduced into that of C2d

(x̄) by a series of norm computations as described above,
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where x̄∈GF (p2d

). If x̄ is a QR in GF (p2d

) then x is also a QR in GF (pm). If
x̄ is a QNR in GF (p2d

) then x is also a QNR in GF (pm). Since any element in
ST−ST−1 must always be a QNR in GF (p2d

), and since x0 = x̄s must belong to
one of sets Sk−Sk−1 for 1�k�T , we only need to identify whether x0∈ST−ST−1

as shown in Fig.3. In OEF and AOPF, we can know whether x0∈ST−ST−1 from
the form of x0. This almost does not need any computation. For example, if an
element in an OEF GF (p4) (4 | (p− 1)) has the form of (0, a, 0, 0) or (0, 0, 0, a)
(a �=0∈GF (p)), then x is a QNR.

2.2 Complexity of the QR Test

In the conventional QR test, x(pm−1)/2 is directly computed using the binary
method, which requires that

#Mm =LW

(
pm − 1

2

)
. (2.14)

In the proposed QR test, we first implement a series of norms N
mj+1
mj (·) for

0 � j � n − 1 to get x̄ using the Frobenius mappings with the addition chain.
From Eq.(2.7), the norm computations N

mj+1
mj (·) for 0�j�n−1 in total require

the sum of
#φmj = #Mmj = LW (rj) , 0�j�n− 1. (2.15)

Then, we compute x̄s. In order to avoid the overlapping computations in the
QR test and the SQRT computation, we first compute x̄(s−1)/2, and then take
its square to get x̄s−1, finally multiply x̄s−1 by x̄ to get x̄s (see Fig.3). When
4 |(p− 1), the computation of x̄s requires (see Appendix G of [11])

#M2d =LW (s1)+LW

(
s1−1

2

)
+

(d + 4)(d− 1)
2

+ (d− 1)LW

(
p− 1

4

)
,(2.16a)

#φ2d =
d(d− 1)

2
. (2.16b)

When 4 �(p− 1), the computation of x̄s requires (see Appendix G of [11])

#M2d = LW (s1) + LW

(
s1−1

2

)
+

(d + 6)(d− 1)
2

+(d− 1)
[
LW

(
p− 3

4

)
+ LW

(
p + 1

2

)]
, (2.17a)

#φ2d =
d(d− 1)

2
. (2.17b)

where the nonnegative integer T1 and the odd integer s1 are satisfied with p2 =
2T1s1 + 1.

Finally, we identify whether x̄s = x0∈ST−ST−1 ⊂ GF (p2d

) from the form of
x0, which almost do not need any compuation as described in Section 2.1.
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3 The Proposed SQRT Algorithm in GF (pm)

3.1 The Proposed SQRT Algorithm in GF (pm)

From the norm definition Eq.(2.3) and (2.9), we have

x̄j+1 = Nmj
mj+1

(x̄j) = x̄
(pmj+1 )rj−1+···+pmj+1+1
j . (3.1)

Dividing the both sides by x̄j x̄j+1 and then taking the SQRT, we have

(x̄j)−
1
2 =(Φmj

mj+1
)

1+p
mj+1
2 · (x̄j+1)−

1
2 , 0�j�n− 1, (3.2)

where Φ
mj
mj+1 is given by Eq.(2.10). It follows that

(x̄0)−
1
2 = (x̄n)−

1
2 ·

n−1∏
j=0

(Φmj
mj+1

)
1+p

mj+1
2 , (3.3)

where x̄0 = x and x̄n = x̄. Therefore, we have

x
1
2 = x̄− 1

2 · x ·
n−1∏
j=0

(Φmj
mj+1

)
1+p

mj+1
2 . (3.4)

When implementing the exponentiation of 1+pmj+1

2 , which can be expressed as

pmj+1 + 1
2

=
(
1 + p + · · ·+ p(mj+1)−1

)
· p− 1

2
+ 1, (3.5)

we apply the Frobenius mappings with the addition chain to the part in paren-
thesis, and apply the binary method to (p− 1)/2 followed by a multiplication.

Based on Eqs.(3.4), the SQRT in GF (pm) can be efficiently computed using
the following algorithm via the Frobenius mappings with the addition chain:

The Proposed SQRT Algorithm over GF (pm) c

INPUT: An odd prime number p and an integer m and a random nonzero ele-
ment x∈GF (pm), where m=r0r1 · · · rn−12d (ri: odd prime, d�0: integer).

OUTPUT: A SQRT z = x
1
2 ∈ GF (pm) such that z2 ≡ x (mod p), or “UN-

SOLVABLE”, if no such solution exists.
PRECOMPUTATION FOR GIVEN p AND m: Factorize the order of the mul-

tiplicative group in GF (p2d

) as shown in Eq.(2.11).

1. If x=1 then return 1. Otherwise, execute the proposed QR test as described
in Section 2.1, if the input x is a QR then save the values of x̄, Φ

mj
mj+1 for

0 � j � n − 1, else if the input x is a QNR then return “UNSOLVABLE”.
From Eq.(2.9), we know x̄= x̄n =xe∈GF (p2d

), where e is given by Eq.(1.1).
2. αj ← Φ

mj
mj+1 for 0�j�n− 1.

3. z ← x̄− 1
2 .

4. About the computations for x ·
∏n−1

j=0 (Φmj
mj+1 )

1+p
mj+1
2 in Eq.(3.4):

(a) βj ← α
1+p

mj+1
2

j for each 0�j�n− 1, γ ←
∏n−1

j=0 βj .
5. z ← zxγ.
6. Return(z).
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3.2 The Complexity of the Proposed SQRT Algorithm

In the proposed SQRT algorithm, step 1 is just the QR test whose complexity
has been evaluated in Section 2.2. Since αj has been computed in the QR test,
we do not evaluate the complexity of step 2.

In step 3, the value of x̄ ∈ GF (p2d

) has been computed in the QR test,
recomputation by step 3 is thus not necessary. We only need to modify the MW-
ST algorithm [5] to compute x̄− 1

2 in GF (p2d

). As described in Section 4.5.4 of
[11], in the case of 4 |(p− 1) and d>1, step 3 on average requires that

#M1 =
T 2 − T + d2 + 5d

4
− 2d−1(d2 + 3d)

2T−1
, (3.6a)

#M2d+1−n =
n2 + 3n− 2

4
, n = 1, 2, · · · , d. (3.6b)

In the case of 4 �(p− 1) and d>2, step 3 on average requires that

#M2=
T 2 − T + d2 + 3d− 4

4
− 2d−2(d2 + d− 2)

2T−1
, (3.7a)

#M2d+1−n=
n2 + 3n− 2

4
, n = 1, 2, · · · , d− 1. (3.7b)

In step 4, we compute the exponentiation of α
1+p

mj+1
2

j for each 0� j �n − 1
and multiply them together. Using binary method and the Frobenius mappings
with the addition chain, step 4 requires the sum of the following equations:

#φmj =#Mmj =LW (mj+1), 0�j�n− 1, (3.8a)

#Mmj =LW (
p− 1

2
) + 1, 0�j�n− 1, (3.8b)

#Mmj =rj−1, 1�j�n− 1. (3.8c)

Since x, γ∈GF (pm) and z∈GF (p2d

), step 5 requires that

#Mm =1, (3.9a)
#M2d =r0r1 · · · rn−1. (3.9b)

3.3 Complexity of the Tonelli-Shanks Algorithm

Assuming pm =2T̄ s̄ + 1, from Eq.(2.11), it follows that

T̄ =T, s̄=s ·
[
1 + (p2d

) + · · ·+ (p2d

)r0r1···rn−1−1
]
. (3.10)

Based on the result in Section 6.3.3 of [11], the average complexity of the
Tonelli-Shanks algorithm over given GF (pm) is that

#Mm =
1
4
(T̄ 2 + 7T̄ − 16) +

1
2T̄−1

+ LW

(
s̄− 1

2

)
+ 2. (3.11)
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4 Computer Simulations

In this section, we set the characteristic p and the extension degree m of GF (pm)
as follows:

p=228 + 625, m=22=11× 2; (4.1a)
p=11969, m=44=11× 22; (4.1b)
p=89, m=88=11× 23. (4.1c)

The conventional QR test, the proposed QR test, the Tonelli-Shanks algo-
rithm and the proposed SQRT algorithm over the extension fields GF (p22),
GF (p44) and GF (p88) are implemented on a Pentium4 (2.6 GHz) computer us-
ing the C++ programming language, where GF (p22), GF (p44) and GF (p88)
are constructed as SEFs that are viewed as extension fields of degree 2, 4, and
8 over GF (p11), respectively, and GF (p2), GF (p4), GF (p8) and GF (p11) are
constructed as OEFs.

Based on Eqs.(2.11) and (4.1), we can get the values of T , s, and then from
Eq.(3.10), we can know the values of T̄ and s̄. Inputting p, m, T , s, T̄ and s̄
to Eqs.(2.14), (2.15), (2.16), (3.6), (3.8), (3.9), and (3.11), we explicitly evaluate
the complexity of the two QR tests and the two SQRT algorithms over GF (p22),
GF (p44) and GF (p88), such as φ4, φ8, #M1, #M2 and so on as shown in the
column A of Table 1. Table 3 shows the number of algebraic operations required
for φi and Mj , where i = 4, 8, 22, 44, 88 and j = 1, 2, 4, 8, 22, 44, 88.
According to the data in Table 3, we can get #A1 and #M1 in the column A of
Table 2.

Table 1. Computational Complexity

Field
Method

A. Complexity

GF (pm) #φ4 #φ8 #φm #M1 #M2 #M4 #M8 #Mm

Conventional QR test − − − − − − − 921

m = 22 Proposed QR test − − 5 − 132 − − 5

p = 228 + 625 Tonelli-Shanks algorithm − − − − − − − 927

Proposed SQRT algorithm − − 1 6 23 − − 34

Conventional QR test − − − − − − − 910

m = 44 Proposed QR test 1 − 5 − − 144 − 5

p = 11969 Tonelli-Shanks algorithm − − − − − − − 928

Proposed SQRT algorithm − − 2 16 1 23 − 21

Conventional QR test − − − − − − − 833

m = 88 Proposed QR test − 3 5 − − − 149 5

p = 89 Tonelli-Shanks algorithm − − − − − − − 843

Proposed SQRT algorithm − − 3 11 2 1 23 12
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Table 2. Computational Amount and Running Time (CPU: Pentium4, (2.6GHz))

Field
Method

A. Amount
B. Time [μs]

GF (pm) #A1 #M1

Conventional QR test 425502 465105 3.4 × 104

m = 22 Proposed QR test 2574 3255 2.6 × 102

Legendre-Kronecker-Jacobi symbol - - 2.8 × 102

p = 228 + 625 Tonelli-Shanks algorithm 428274 468135 3.5 × 104

Proposed algorithm 15754 17311 1.2 × 103

Conventional QR test 1721720 1800890 1.3 × 105

m = 44 Proposed QR test 11188 12834 0.9 × 103

p = 11969 Tonelli-Shanks algorithm 1755776 1836512 1.4 × 105

Proposed algorithm 40010 42097 3.1 × 103

Conventional QR test 6377448 6523223 4.8 × 105

m = 88 Proposed QR test 46624 50155 3.2 × 103

p = 89 Tonelli-Shanks algorithm 6454008 6601533 4.9 × 105

Proposed algorithm 93176 95885 0.7 × 104

Table 3. The Number of Algebraic Operations Required for φi and Mj , where i =

4, 8, 22, 44, 88 and j =1, 2, 4, 8, 22, 44, 88

φ4 φ8 φ22 φ44 φ88 M2 M4 M8 M22 M44 M88

#A1 − − − − − 2 12 56 462 1892 7656

#M1 3 7 20 40 80 5 19 71 505 1979 7831

From the column A of Table 1, we see that #Mm required in the proposed
SQRT algorithm is much smaller than that in the Tonelli-Shanks algorithm,
primarily because in the proposed SQRT algorithm, most of multiplications in
a given extension field are replaced by those in its proper subfields.

Inputting 560, 000 random QRs, the running time for the two QR tests and the
two SQRT algorithms were measured in the column B of Table 2. The column A
of Table 2 shows that, using the proposed QR test, the numbers of computations
in GF (p22), GF (p44) and GF (p88) show about 130-fold reductions, compared
to the conventional QR test. Using the proposed SQRT algorithm, the numbers
of computations in GF (p22), GF (p44) and GF (p88) show 25-fold, 45-fold and
70-fold reductions for p=228 + 625, 11969 and 89, respectively, compared to the
Tonelli-Shanks algorithm, where the number of computations is the number of
the algebraic operations required in GF (p). The computer simulations show that,
on average, the proposed QR test accelerates the QR test by about 130 times
in GF (p22), GF (p44) and GF (p88), compared to the conventional QR test. The
computer simulations also show that, on average, the proposed algorithm accel-
erates the SQRT computation by 25 times in GF (p22), by 45 times in GF (p44),
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and by 70 times in GF (p88), compared to the Tonelli-Shanks algorithm, which
is supported by the evaluation of the number of computations.

5 Conclusion

We have presented an efficient SQRT algorithm over GF (pm) based on Eqs.(3.4).
Although the main idea of the proposed SQRT algorithm is based on the Tonelli-
Shanks algorithm, in the proposed SQRT algorithm over GF (pm), most of the
computations required in extension fields GF (pm) can be reduced to those in
proper subfields GF (pmj ) for 1 � j � n and GF (p2d−i

) for 1 � i � d. To the
contrary, all the computations required for the Tonelli-Shanks algorithm over
GF (pm) must be executed in extension fields GF (pm). In addition, the proposed
SQRT algorithm can reuse the intermediate data of the QR test, such as Φ

mj
mj+1

for 0�j�n−1. The computer simulations showed that, on average, the proposed
algorithm accelerates the SQRT computation by 25 times in GF (p22), by 45
times in GF (p44), and by 70 times in GF (p88), compared to the Tonelli-Shanks
algorithm, which is supported by the evaluation of the number of computations.
Therefore, we can conclude that the proposed SQRT algorithm over GF (pm) is
very efficient.
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Appendix: Legendre-Kronecker-Jacobi Symbol

We can use Legendre-Kronecker-Jacobi symbol for a QR test. Table 4 shows
the simulation result. As shown in Table 4, the calculation time when we use
Legendre-Kronecker-Jacobi symbol is faster than that of our proposed QR test.
Our proposed method can use the calculation results of QR test in the following
SQRT calculation; however, the case of Legendre-Kronecker-Jacobi symbol can-
not. Therefore, we can carry out the QR test with Legendre-Kronecker-Jacobi
symbol, but the QR test dose not contribute to the following SQRT calculation.

Table 4. Calculation Time over GF (p22). (CPU: Pentium4, (2.6GHz)).

Field Method Time [μs]

Conventional QR test 3.4 × 104

m = 22 Proposed QR test 2.6 × 102

Legendre-Kronecker-Jacobi symbol 1.8 × 102

p = 228 + 625 Tonelli-Shanks algorithm 3.5 × 104

Proposed algorithm 1.2 × 103
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Abstract. This paper presented the smallest hardware architecture of
the ARIA block cipher algorithm. A 128-bit data block was divided into
eight 16-bit blocks to reduce the hardware size. The 16-bit architecture
allowed two S-Boxes and 16-bit diffusion operation. We proposed a design
for the substitution layer and the memory block. The proposed round
key generator processed a 16-bit block of a 128-bit round key for three
cycles. The proposed ARIA module with a 128-bit key comprised 6,076
equivalent gates using a 0.18-μm CMOS standard cell library. It took
88 clock cycles to generate four initial values for a round key and 400
clock cycles to en/decrypt 128-bit block data. The power consumption
of 16-bit ARIA was only 5.02 μW at 100 kHz 1.8V.

Keywords: Cryptography, ARIA, Low Power Design.

1 Introduction

The notion of ubiquitous computing is becoming more general in human be-
ings’ lives. Radio Frequency Identification (RFID) products are used to identify
products at sup-ply chains, to enter buildings, and to pay bus fares. Also, many
experts expect that a ubiquitous sensor network will cover various fields from
military to nuclear power plant applications. These ubiquitous devices will ad-
dress heavier information transfers. It will need increasingly better protection
on information from eavesdroppers.

The block cipher algorithm named Academy, Research Institute, Agency
(ARIA) was announced as the Korean standard block cipher algorithm in Dec.
2004 [1]. The ARIA is a 128-bit block cipher with an involution Substitution
Permutation Network (SPN). Since 2004, just few studies have been published
on the hardware architecture for the ARIA in contrast to Advanced Encryp-
tion Standard (AES). The 128-bit architecture with one round looping structure
was proposed for high-throughput [4]. It used 1,491 slices and 16 BlockRAMs.
It yielded throughput of 496 Mbps at 46.5 MHz. Because it was optimized for
high-throughput, its applications were limited such as server systems for net-
work security. A compact 32-bit design has been implemented and simulated

M.S. Rhee and B. Lee (Eds.): ICISC 2006, LNCS 4296, pp. 107–117, 2006.
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with 0.25-μm CMOS standard cell library [6]. It used 13,893 gates and power
consumption was 61.46 mW at 71MHz. However, it was yet small enough for
practical use.

In this paper, we propose a 16-bit architecture for ARIA block cipher which
hardware size is under 10,000 gates. We focus on a power restricted system such
as RFID tags. A circuit design for cryptography depends on a target system.
Especially, the power restricted system needs lots of consideration to design the
circuit due to many constraints which the proposed compact architecture should
meet such as area and power consumption. This paper is organized as follows.
In section II, ARIA algorithm is briefly described. In section III, the proposed
ARIA implementation is presented. Section IV explains simulation results of the
proposed ARIA design. Finally, concluding remarks are in Section V.

2 ARIA Algorithm

The ARIA algorithm is a symmetric cipher which is designed for the same specifi-
cation of the AES. It encrypts and decrypts 128-bit blocks of data using a secret
key. A key size can be one of 128, 192, or 256 bit. The ARIA comprises two
blocks: a round function for en/decryption of incoming data and a key scheduler
including an initialization and round key generation.

The round function is based on the involution SPN that a round function
iteratively operates 12, 14 and 16 rounds in accordance to the key width. It
consists of the Substitution layer, the Diffusion layer and the AddRoundKey
layer except the last round. In the last round, the AddRoundKey layer replaces
the Diffusion layer as shown Figure 1. The output value of each layer is defined
as a state which consists of a 128-bit memory. The AddRoundKey layer is to
perform an exclusive-OR operation that adds the 128-bit round key to the state,
where the round key is generated each round. The Substitution layer uses four
S-boxes: S1, S2, S−1

1 , and S−1
2 . An irreducible polynomial of Equation (1) is

used to define the field. The S-box S1 is defined to be an affine transformation
of the multiplicative inverse, x−1 on GF (28) as shown in Equation (2) of Figure
1. The S-box S2 uses the affine transformation of x247 on GF (28) as shown in
Equation (3) of Figure 1. The Diffusion layer is an involutional 16× 16 binary
matrix of Equation (4) in Figure 1.

m(x) = x8 + x4 + x3 + x + 1 (1)

The key scheduler performs two processes: the key initialization and the round
key generation. In the key initialization process, four 128-bit values, W0, W1, W2

and W3 are generated from the master key through a three-round 256-bit Feistel
cipher. In the round key generation process, the key generation block issues
round keys combining the four Wi values. The round keys for encryption differ
from the round keys of decryption. The round key sequences are strictly in order;
all keys but the first and the last are sent to the Diffusion layer.
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Fig. 1. ARIA-128 algorithm

3 Compact Architecture for ARIA Algorithm

The ARIA hardware can be tailored to a smaller die-size because the algorithm
can be implemented on various platforms with different bus widths. It can be
restructured suitable for 16-bit, 32-bit and 128-bit platforms. The Diffusion layer
of ARIA is hard to be designed without registers to store an intermediate value
for the operation. Registers used in the implementation make hardware size
bigger, power consumption higher, and process-ing time increase.

The goal of our design of the ARIA is to minimize the size of hardware
and average power consumption. This paper presents a 16-bit ARIA design
with compact architecture shown in Figure 2. We modify the data path em-
ploying a dual addressing in [7], making a structure with a single addressing
scheme. A memory based on the static RAM is modified by using the gated
clock method. The round function consists of the Upper/Lower AddRoundKey
layer, the Substitution layer employing a multiplicative inverter on the compos-
ite field GF (((22)2)2), and the Diffusion layer designing a 16×16 binary matrix.
The round key generator of [7] is also modified in here.
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Fig. 2. Block diagram comprising a data-path, a round key generator, a memory block,
a substitution layer, and a diffusion layer are modified for the 16-bit operation of ARIA

3.1 Data Path

The ARIA is an involution SPN where an encryption and decryption use the
identical data path as shown in Figure 1. We modify a data path of round
function and key scheduler to reduce a processing time. In our design with 16-
bit-width data path, the round function takes 32 cycles except the last round
of 48 cycles: 24 cycles of the round key generation and 8 cycles of the diffusion.
In the case that the round function was designed in a 32-bit data path in [6], it
had taken 16 cycles instead of 24 cycles.

In the round function, the forms of the data path are a AddRoundKey, Sub-
stitution, and Diffusion flow for encryption and a Diffusion, Substitution, and
AddRoundKey flow for decryption. Although this idea had been adopted in [7],
we improve the data path as shown in Figure 2. AddRoundKey layer and Sub-
stitution layer are operated simultaneously. AddRoundKey layer can be placed
selectively at the both sides of the Substitution layer. For encryption, the Ad-
dRoundKey block is enabled in the upper side and is masked in the lower one.
The operation for decryption is in the reverse order.

The previous round key generator in [7] takes 4 cycles: 3 cycles for reading
and 1 cycle for initializing the register. We eliminate an initialization process
of the register. The combination of the four Wi values yields round keys. The
proposed key scheduler generates the round keys by using a shifter for rotating a
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Fig. 3. Representation conversion process of x247 with x−1

word, a 16-bit exclusive-OR gate, and registers as shown in the left side of Figure
2. The shifter rotates data from Key Expansion Memory by the predetermined
number of positions. The rotated data goes through the exclusive-OR gate with
the previous output value stored in the register.

3.2 Substitution Layer

The S-Box is the most critical component for controlling the size and the speed
of the hardware implementation. The Substitution layer of ARIA comprises four
S-Boxes, S1, S−1

1 , S2, and S−1
2 . We introduce two methods for the optimization

of S-boxes. In the first method, only two tables are used for the optimization
of S-boxes instead of the general one using 4 tables. S-boxes, S1 and S2, are
pre-calculated with the terms, x−1 and x247, two tables and two affine transfor-
mations in the specification of ARIA.

In GF (28) with the polynomial f(x) = x8 + x4 + x3 + x + 1, the term x247

can be represented as an-other form with the multiplicative inverse, x−1. The
term x247 is equivalent to x−8 in the field. If we introduce a new table C, x−8

can also be represented as C · x−1 because of the linearity of the field. Table C
is a 8 × 8 binary matrix as shown in Equation (5). As a result, the equation of
S-box S2, B ·x247⊕ b, becomes (B ·C) ·x−1⊕ b. Here, a new table, D = B ·C, is
computed by Equation (6). We can redefine S-box S2: x 	 D · x−1 ⊕ b. Figure
3 shows the process of the representation conversion of x247 with x−1.

The second method employs the compact implementation of x−1 using a com-
posite field proposed by Satoh [12]. For the optimization of a multiplicative in-
verse, a composite field GF (((22)2)2) is used [2]. The isomorphism functions δ
and δ−1 are located at the both sides of the S-Boxes, and can be merged with an
affine transformation [9]. ARIA has two kinds of substitutions. The substitution
used in even round functions consists of S1, S2, S−1

1 , and S−1
2 as shown in Figure

4a. The substitution used in even round functions consists of S−1
1 , S−1

2 , S1, and
S2 as shown in Figure 4b. The two substitution blocks can use the common mul-
tiplicative inverter with multiplexers as shown in Figure 4c. Sharing the common
factors of the isomorphism function and the affine transformation reduces the
number of exclusive-or gates and the critical path delay as shown in Figure 4d.
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Fig. 4. Unified substitution layer architecture

Table 1. Equivalent gates of Substitution layer

The hardware size of the proposed Substitution layer is 79 % smaller than that
of the lookup table scheme of [7]. The comparison between the proposed memory
and the dual addressing scheme is described in Table 1. The Substitution layer
in this paper is implemented manually using a 0.18-μm CMOS standard cell
library in the gate level. One gate is equivalent to a 2-way NAND.

3.3 Diffusion Layer

In the proposed design, we employ a 16× 16 binary matrix which diffuses 16-bit
data at one time. It takes 8 cycles for diffusing a 128-bit block. This architecture
can re-duce the number of gates compared to the previous one with a 4 × 16
binary matrix in [7] dividing the original 16× 16 matrix by 4. It is because the
4×16 binary matrix in [7] needs an additional 128-bit register with intermediate
values for the diffusion operation.

We delve into the diffusion logic in Equation (4) and find that each bit, S0,c,
in 16 8-bit blocks in State Memory can be processed in a bit serial fashion with
small logics. It can be replaced with the result S′

0,c, in the original position
without an immediate value. Additional registers in Diffusion layer in [7] can
be eliminated. In this design, the Substitution layer makes a progress 8 cycles
after a complete 128-bit state is made in the Diffusion layer. State Memory for
diffusion operation is modified and re-quires 96 2-input exclusive-or gates. A size
of 197 EGs is obtained through an automatic synthesis, and it is about 93 %
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Fig. 5. The operation of proposed diffusion layer

smaller than that of the 4 × 16 binary matrix. Eventually, this feature of the
modified Diffusion layer makes the design more efficient in power.

3.4 Memory Block

The proposed ARIA design has a Key Expansion Memory block storing four
128-bit values of W0, W1, W2, and W3 for the round key generator and a State
Memory block for the state of the round function. Because the memory consumes
the power in the system mainly due to the clock, it makes an ARIA design
difficult to be efficient in power.

Memory blocks designed in this paper are represented as a static single port
memory. Clock gating is applied to reduce power consumption. In this design,
clock gating is an efficient technique because only one 16-bit register in the mem-
ory block can be processed at a time and the others are disabled to save power.
The memory used in State Memory and Key Expansion Memory is modified to
save power as shown in Figure 6.

Key Expansion Memory is the biggest of the compact ARIA design. The
operation of Key Expansion Memory stores four values in initialization, and
outputs the saved data in encryption and decryption. Because data in memory
only changes in initialization, we employ a latch for lower power consumption
and smaller size than a flip-flop.

4 Results of Simulation

This section reports the simulation results of a 16-bit version: hardware size,
throughput, and power consumption. Circuit were described and verified in
Verilog-HDL. The simulation is based on the transistor level using a 0.18-μm
and 0.25-μm CMOS standard cell library from MagnaChip Semiconductors. A
synthesis is per-formed on Design Compiler from Synopsys. The power consump-
tion is an important factor of the design for a restricted power supply.

We explain how to measure the overall consumption of power, and then ana-
lyze each block of the design. The power consumption is measured at 100 kHz
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Fig. 6. The block diagram of the State Memory

and 2.5 V power supply. It is an average power dissipated in initializing the
round key and encrypting the 128-bit plain-text. All the values in the paper are
from the simulations on the transistor level estimation, which was performed by
using NanoSim from Synopsys Inc.

A total hardware size is estimated to be 6,076 equivalent gates. Table 2 shows
the number of equivalent gates of each block of the 16-bit ARIA design. The
proposed 16-bit ARIA is about 83 % smaller than the 128-bit system [5] and
about 45 % smaller than 32-bit one [7]. The biggest circuit is the memory block:
Key Expansion Memory requires 2,605 EGs (42.8 %) and State Memory 1,280
EGs (21.0 %). Although memory blocks have a big size, we can reduce the size
by employing a latch than a flip flop. The Substitution layer requires 740 EGs
about 79 % smaller compared to the previous one. The Substitution layer using a
composite field inverter is more efficient than one using LUT [7]. It is effective to
merge the isomorphism function and affine transformation. Sharing the common
factor is another feature to enhance effectiveness. The diffusion block which uses
one 16 × 16 binary matrix generated by synthesis tools requires only 192 EGs.
The control block has 722 EGs. The complexity of the control block in-creases
as the word size decreases.

The power consumption of 16-bit ARIA is 5.02 μW at 100 kHz. The Diffusion
layer in the proposed design consumes 0.16μW. The number of data transitions
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Table 2. Equivalent gates and power consumption of each component in 16-bit ARIA

Table 3. Performance comparison for ASIC implementations

of a 128-bit register in the diffusion block of the dual addressing scheme is 48 for
12 rounds. We eliminate the immediate register, and make the Diffusion layer
operate on low power. 47.39% of power is consumed only in Substitution layer’s
data transitions in the design. If we use the low power S-Box circuit of Satoh [12],
the power consumption can decrease further. Only in 8 cycles of 24 cycles for
the AddRoundKey and Substitution, the data transition is effective. Masking of
input data in the Substitution layer for the other cycles is to reduce the number
of data transitions in the logic. The power consumption of the control block
takes 18.54 % of the total. Why we do not concern about energy consumption is
that the power consumption per clock cycle is limited although the total energy
consumption of an operation might be larger [11].

The throughput is not the most important factor in a low power environment.
Most applications in the low power environment use a simple value only. An
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RFID uses an ID, which is from one to hundred bits. A sensor node does not
require a high-throughput in a ubiquitous sensor network. The throughput of this
design at 100 kHz is 32 Kbps. According to a synthesis report, the 16-bit ARIA
design allows 15 MHz as the maximum frequency, and the maximum throughput
is 4.8 Mbps after initialization. The proposed ARIA needs 88 clock cycles for
initialization and 400 clock cycles for en-cryption/decryption. The round key
generator takes 24 clock cycles because generating a 16-bit word of one round
key needs 3 cycles. A concurrent operation of AddRoundKey and Substitution
requires 24 clock cycles in encryption. The Diffusion layer takes 8 clock cycles.
One round needs 32 clock cycles except the last round which uses 48 clock cycles.
It is because a AddRoundKey layer is more needed in the last round. Although
an 8-bit architecture has a bit small size, the 16-bit one meeting those constraints
can support a higher data throughput.

5 Conclusion

This paper presents a compact architecture for ARIA. We modify the data path
eliminating the diffusion function to generate a decryption round key. A 16-bit
bus-width was employed in order to reduce the hardware size. It requires only an
quarter size of 128-bit processing. The S-Box is very small due to the compos-
ite field inverter and the representation conversion of x247 of S-Box using x−1.
The memory module employing a gated clock reduces the power consumption
effectively.

The proposed design of ARIA meets the constraints of low-power environment.
The 16-bit ARIA comprises 6,076 equivalent gates. The power consumption of
the 16-bit ARIA is 5.02-μW at 100 kHz 1.8V. Measurements in this work are
estimated by simulation using a 0.18-μm CMOS process. It needs 88 clock cycles
to generate initial values for a round key and 400 clock cycles to en/decrypt
a 128-bit block data. Its maximum throughput is 4.8 Mbps at 15 MHz. The
proposed architecture is the small-est among ARIA design published so far as
shown in Table 3.
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Abstract. A main obstacle in manufacturing the TWIRL device for
realizing the sieving step of the Number Field Sieve is the sophisticated
chip layout. Especially the logic for logging and recovering large prime
factors found during sieving adds significantly to the layout complexity.
We describe a device building on the Elliptic Curve Method (ECM) that
for parameters of interest enables the replacement of the complete logging
part in TWIRL by an off-wafer postprocessing. The postprocessing is
done in real time, leaving the total sieving time basically unchanged.

The proposed device is an optimized ECM implementation building
on curves chosen to cope with factor sizes as expected in the output of
TWIRL. According to our preliminary analysis, for the relation collec-
tion step expected for a 1024-bit factorization our design is realizable
with current fab technology at very moderate cost. The proposed ECM
engine also finds the vast majority of the needed cofactor factorizations.
In summary, we think the proposed device to enable a significant de-
crease of TWIRL’s layout complexity and therewith its cost.

Keywords: RSA, NFS, ECM, cryptanalytic hardware.

1 Introduction

Lacking paramount theoretical progress in the design of algorithms for factoring
integers, in recent years significant efforts have been invested into designing
special purpose hardware for factoring. Having in mind a record factorization
of a 1024-bit RSA-modulus, at the moment the (General) Number Field Sieve
(NFS) seems to be the algorithm of choice, and consequently several proposals
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for using dedicated hardware to speed up the time-dominating steps of the NFS
have been put forward. In particular, for the NFS’ linear algebra step significant
progress has been achieved [2,14,8,5,6]—for the most recent designs thinking of
a practical implementation for the 1024-bit case does not seem too far-fetched.

On the other hand, even the most recent designs that have been proposed for
implementing the sieving step of the NFS—the other time-dominating part of
the NFS—rely on highly non-trivial technological assumptions: for mesh-based
devices along the lines of [2,7,9,10] no practically promising parameter set for
the 1024-bit case has been proposed so far, the TWIRL device [23,15] involves
rather large chip sizes along with a non-trivial layout, and for SHARK [4] the
actual implementation of the underlying butterfly transport system is techno-
logically challenging. From a practical point of view, finding modifications or
alternatives to the existing proposals that are of comparable performance but
closer to existing fab technology is highly desirable.

In this contribution we describe a device that enables the removal of the
complete “diary circuitry” from TWIRL (see [23, Appendix A.7]). This part of
TWIRL adds significantly to the layout complexity, but unfortunately seems
vital for the recovery of largish prime factors found during sieving. While our
approach does not solve the problem of TWIRL being a wafer-scale design, it
enables a significant reduction of the complexity of the layout. We show that for
relevant parameter choices it is feasible to omit the recording of prime factors
during sieving, and to recover them in a postprocessing phase with an optimized
implementation of the Elliptic Curve Method (ECM): Our design builds on ellip-
tic curves chosen to cope with factor sizes as expected in the output of TWIRL.
Specifically, for the parameters currently considered as realistic for the 1024-bit
case, according to our preliminary analysis the proposed ECM engine can be
implemented on chips of standard size at very moderate cost. Additionally, the
suggested device computes almost all the required cofactor factorizations. As the
required computations can be performed in real time, the overall sieving time
remains basically unchanged. In summary, we think the proposed ECM engine
to enable a significant decrease of TWIRL’s layout complexity and therewith
its implementation cost. Clearly, the major issue that TWIRL is a wafer-scale
design is not solved by our contribution. However, we think that simplifying the
structure of this wafer-scale circuitry is a significant contribution towards a pro-
totype of TWIRL. The chips proposed for our design are fairly standard ASIC
chips, whose production should encounter no major obstacles. For other sieving
designs like SHARK [4] it seems worthwhile, too, to explore—e. g., bandwidth—
savings that can be achieved through the use of a high performance ECM engine
as described here. The idea of not having to store prime factors found during
sieving seems to be more than of pure conceptual relevance. Due to the very
modest hardware requirements, our approach may in fact be of independent
interest for NFS implementations on “classical” hardware platforms.

Further related work. We do not claim the idea of using a dedicated ECM cir-
cuitry within the relation collection step of the NFS to be a novel one, e. g., the
idea of a parallel ECM engine for smoothness testing is mentioned in [2,15]
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already, and [20] proposes a dedicated ECM engine in connection with the
SHARK device. The design presented below differs significantly from that in
[20] resp. SHARK, however. To the best of our knowledge our proposal is the
first one that aims at coping with the performance requirements needed to sub-
stitute parts of the TWIRL architecture through an ECM engine and has been
explored at this level of detail. Our discussion includes, e. g., an issue like efficient
primality testing within ECM, and we are not aware of a “simple reparametriza-
tion” of the design in [20] that meets our performance requirements. However,
we deem it an interesting question for future work to what extent the ideas
below can also facilitate an implementation of SHARK—and vice versa how to
integrate ideas from [20] with TWIRL.

Should we do better? It may look tempting to expand the role taken by ECM in
the relation collection, and we considered a hybrid design where an ECM engine
replaces the algebraic TWIRL device altogether. However, so far we could not
identify a concrete design, where this approach yields a device that is easier to
implement than the known proposals.

2 Preliminaries and Parameters

Providing an introduction to the NFS is beyond the scope of this contribution,
and we refer to [22] for a survey and to the standard reference [13] for details
of the NFS. Section 2.1 gives a brief summary of those aspects of the (relation
collection step of the) NFS, that are crucial for our design. Similarly, for an
introduction to ECM we refer to [16], but Section 2.2 recalls those aspects that
are relevant for describing our design.

2.1 Choice of NFS Parameters

In this paper we deal with the NFS’ relation collection step only. At this we are
given two univariate polynomials f(x), g(x) ∈ Z[x] sharing a common root M
modulo the integer N to be factored:

f(M) ≡ g(M) ≡ 0 (mod N).

Everything related to f(x) is usually referred to as belonging to the algebraic
side, and analogously for everything related to g(x) we use the term rational
side. We are specifically interested in the case of a 1024-bit factorization with
N = 1350 . . .7563 being the number RSA-1024 as specified in [12]. To this aim
we assume the polynomials f(x) and g(x) to be chosen of degree 5 and 1, respec-
tively, as proposed in [23, Appendix B.2] resp. [15, Appendix B]. Both of these
specific polynomials are non-monic, and accordingly we define two homogeneous
polynomials Na(a, b) := |b5 · f(a/b)| (of degree 5) and Nr(a, b) := |b · g(a/b)| (of
degree 1). Now the goal of the relation collection step can be phrased as finding
pairs of coprime integers (a, b) with b > 0 such that both Na(a, b) and Nr(a, b)
split into a product of primes smaller than a smoothness bound ya resp. yr. At
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this, we do not require a “full splitting”, but allow that Na(a, b) resp. Nr(a, b)
contain up to �a resp. �r “large” prime factors below some semi-smoothness
bound za resp. zr.

The question of the concrete choice of these parameters and of the required
sieving range for the pairs (a, b) obviously arises. As our device aims at an
integration with TWIRL, for the analysis of the 1024-bit case we adopt the
parameters from [23] resp. [15, Table 10]:
– On the rational side, the smoothness and semi-smoothness bounds are chosen

as yr = 3.5 · 109 and zr = 4 · 1011, respectively.
– On the algebraic side, the smoothness and semi-smoothness bounds are cho-

sen as ya = 2.6 · 1010 and za = 6 · 1011, respectively.
– 2 + 2 large primes are used, i. e., both on the rational and on the algebraic

side we allow �r = �a = 2 large prime factors.
– For the sieving region −A < a ≤ A, 0 < b ≤ B we choose A = 5.5 · 1014 and

B = 2.7 · 108.

Another figure that is important for analyzing the 1024-bit case in more detail,
is the rate at which (a, b)-candidates are output by TWIRL: To be of practical
interest, the required test of simultaneous smoothness of Nr(a, b) and Na(a, b)
should be completed in real-time and not require extensive buffering. Following
[23, Appendix A.7], we can expect that a fraction of γ := 2 · 10−11 of the sieve
locations will be output by TWIRL as interesting (a, b)-candidate. With the
1024-bit parameters in [23], TWIRL handles sa = 215 sieve locations per clock
cycle, running at a clock speed of f := 1 GHz. If the candidates were output in
regular time intervals, we thus had to handle about

Δ′ := f · γ · sa ≈ 655

sieve locations per second with our ECM engine. At the beginning of the sieving
phase more candidates are to be expected, but at this early stage we can simply
store the candidates in some buffer, and it seems safe to design our ECM engine
to handle Δ := 1000 candidate (a, b)-pairs/second. The unlikely case of a buffer
overflow can be tolerated and is compensated by simply performing slightly
more sieving. For each of these candidates we have to determine the norms
Nr(a, b), Na(a, b) and compute the prime factorizations hereof if the smoothness
conditions are met. With the mentioned choices for Nr, Na, A and B the numbers
to be factored can be expected to have no more than 216 bit on the rational and
350 bit on the algebraic side.

It is certainly acceptable to allow the ECM engine to fail for a small fraction
of the “good” (a, b)-candidates. Based on software simulations, for the NFS
parameters considered here, we decided to use 84 curves on each side, and we
estimate that < 0.5% of the “good” (a, b)-candidates get lost. To further decrease
the error, one could implement a version of our design applying more curves
and pay for this with an increased chip area. E. g., allowing 128 curves, on the
algebraic side, we encountered only 75 integers out of 106 that would be semi-
smooth on the algebraic side, but could not be factored by the curves used in
our design. The chosen number of 84 curves seems to be an acceptable trade-off
between error rate and chip area.
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2.2 The Elliptic Curve Method (ECM)

To factor a composite n ∈ N with Lenstra’s ECM method, one starts by choosing
a random point P = (x : y : 1) on a random elliptic curve in Weierstrass
normal form. Assuming gcd(6, n) = 1, in affine coordinates that is a solution of
a Weierstrass equation

y2 = x3 + ax + b (1)

modulo n, where gcd(4a3 + 27b2, n) = 1. Then the solutions of (1) modulo a
prime divisor q of n constitute a finite abelian group Eq if we adjoin a point
O = (0 : 1 : 0) at infinity (serving as identity element). Lenstra’s idea was to
apply Pollard’s “p − 1”-method of factorization [21] but to work in Eq instead
of (Z/qZ)∗. The key point here is that the order of Eq depends on a, b and q,
i. e., not only on q. This allows multiple tries with different curves for the same
composite n. Formulae for the group law for curves in Weierstrass form are given
in [16]. One can expect that with a certain positive probability—depending on
the number of B-smooth integers in (q + 1− 2

√
q; q + 1 + 2

√
q)—the order #Eq

is B-smooth for a fixed bound B (and #Eq′ is not B-smooth for prime divisors
q′ �= q of n). Then the computation of∏

p<B

pep · P, ep = !logp(q + 1 + 2
√

q)", (2)

yields the prime divisor q of n.
After the computation of (2) we can run a so-called continuation as in the

case of Pollard’s method of factorization. This resembles Shanks’ Baby step-
Giant step method. If we choose a second bound C > B, a sufficient condition
for a continuation of ECM to find q is then that #Eq be divisible by a prime
p, B ≤ p < C, and #Eq/p be B-smooth. We will explain the choice of the
continuation in Section 3.2 below.

3 Splitting the Norms in Real Time

The goal of our device is to check whether the candidates (a, b) received (from
a diary-free TWIRL) satisfy the rational and algebraic semi-smoothness con-
ditions. If yes, the factorizations of Nr(a, b) and Na(a, b) are to be computed.
These computations are to be done in real time, so that no excessive buffering or
a significant increase of the time spent for relation collection becomes necessary.
The proposed design naturally splits into two parts which process the received
values in a pipelined manner: a Rational Factorization Unit and an Algebraic
Factorization Unit.

3.1 Basic Components

The Rational Factorization Unit. It is distributed on four identical chips. Each
of these chips consists of four parts: The first part, a controller, handles the I/O,
distributes the tasks to the other parts on the chip and stores the results. The
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second part receives the (a, b) pairs from TWIRL through the controller and
calculates the rational norm Nr(a, b), where b remains constant during the siev-
ing of one line. After some preprocessing for each line, calculating the rational
norm (which can be expected to have no more than 216 bit) therefore reduces
to the evaluation of an affine polynomial, i. e., one multiplication and one ad-
dition. These operations are performed using a 16 bit adder, some logic for the
multiplication and four registers up to a length of 216 bit. Some 10,000 tran-
sistors should be sufficient to realize this part. The norm Nr(a, b) is forwarded
to the trial division pipeline that performs the divisions with all primes/prime
powers ≤ 100, 000 and reports the factors found to the controller. The remaining
factor of Nr(a, b) (with ≈ 200 bit on average) is then forwarded, through the
controller, to the fourth and largest part of the chip, the ECM engine. Details of
the trial division pipeline and the ECM engine which factors the remaining part,
if the semi-smoothness conditions are met, will be discussed in Section 4.2. If an
(a, b)-pair turns out to satisfy the rational semi-smoothness bounds, it is—along
with a report encoding the factors found on the rational side—forwarded to the
subsequent algebraic factorization unit.

The Algebraic Factorization Unit. It is realized with five chips and has the
same structure as its rational counterpart, but it considers only those (a, b)-
pairs where the rational semi-smoothness conditions turned out to be fulfilled
already. As on the rational side, first the norm Na(a, b) has to be computed,
which for a constant b amounts to 5 multiplications and 5 additions (using
Horner’s rule). On the algebraic side we have to deal with larger integers than
on the rational side, and we can expect Na(a, b) to have no more than 350 bit.
However only those (a, b)-pairs fulfilling the rational semi-smoothness conditions
are forwarded to this device. Therefore on average no more than 75 inputs are
expected per chip and second. This reduced number of inputs compensates the
larger multiplication/division time. It should be possible to realize this part with
14,000 transistors. Again, the trial division pipeline and an ECM engine are used
to split Na(a, b) into prime factors.

3.2 Design of the ECM Engine

From a mathematical point of view, our use of ECM on the algebraic and the
rational side is the same: We build on an identical set of 84 curves over Q, and for
the second phase we use the same improved standard continuation. Due to the
different operand sizes, however, the hardware implementation on the algebraic
and the rational side is different. In the remaining part of this section we focus on
theoretical parameter choices underlying our design. Section 4 discusses aspects
related to a hardware implementation.

Choice of Curves. Any elliptic curve over a field K with charK � 6 is isomor-
phic to a curve in Weierstrass form (1). Referring to ideas of Suyama, in [19]
Montgomery suggests to use different families of curves to speed up ECM. In
fact, it is possible to choose a random elliptic curve Eq over Fq and to guarantee
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d | #Eq for any fixed d ∈ {4, 12, 16}1. Basing on software experiments of one of
the authors [11], for our purposes the family proposed by Atkin and Morain in
[1] with d = 16 seems to perform best.

In [19] Montgomery proposed to use elliptic curves of the form

sy2 = x3 + tx2 + x, gcd(s(t2 − 4), n) = 1. (3)

Equation (3) usually is referred to as Montgomery form or Chudnovsky form, and
[19] gives efficient formulae for the computation on curves of this form. One major
advantage is that these formulae enable the evaluation of the product (2) without
the use of inversions. Additionally the order of the torsion subgroup of a curve of
this type is known a priori to be divisible by 4. Besides being useful for factoring
this also implies that not all elliptic curves can be isomorphically transformed
into this form. The family with d = 16 proposed by Atkin and Morain may be
transformed into Montgomery form. Generation of random curves of this family
involves computations on an elliptic curve which cannot be transformed into
Montgomery form (due to the reason mentioned above). The aspects of curve
generation are discussed in the following paragraph.

Generation of Curves. For a composite n we generate a random elliptic curve
modulo n and a point on it as follows. According to [1], S := (12 : 40 : 1) is a
point of infinite order on E : Y 2 = X3 − 8X − 32 over Q. Therefore we get for
every r ∈ N a different point (x : y : 1) := r · S ∈ E. According to [1] and [11]
every (x, y) yields an elliptic curve Er in Montgomery form for which we can
guarantee 16 | #Er as follows:

Define α := (x− 9)/(x + y + 16) and β := 4α + 1. Then x̃ := 4β − (β2 − 1)
(β + 1)2, z̃ := 4(β + 1)2 yield a point (x̃ : ỹ : z̃) of infinite order on the elliptic
curve Er given by sY 2 = X3 + tX2 + X with s, t, ỹ also depending on α. For
actual computations we do not need to know the values of ỹ, s, t but the value
of

t + 2
4

=
(β2 + 1)4

16β2(β2 − 1)2
.

This term is the only one, despite of x̃ and z̃, that is needed by the arithmetic
described by Montgomery in [19] for computations on Er. For our design it seems
practical to precompute the values of β over Q for r ∈ {1, . . . , 84} and to proceed
then modulo n to compute x̃, z̃ and (t + 2)/4. Numerators and denominators of
the coordinates (x, y) grow rather quickly over Q. Since we restricted our setting
to the “first” 84 curves of this family, the numerators and denominators of the
values of β we need to handle are bounded in size by 17 kbit.

Modular reduction of such large numbers takes time. Therefore we partition
the set of the values of α as follows. The i-th partition consists of the curves for
r ∈ {i, i + 14, i + 28, i+42, i+ 56, i+70}. To factor n we then choose randomly2

1 By a celebrated result of Mazur we cannot expect more, because of 16 being the
maximal order arising for a torsion subgroup of an elliptic curve over Q.

2 In a hardware implementation the needed random value can be determined, e. g.,
using an LFSR.
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i ∈ {1, . . . , 14} and apply the curves i, i + 14, i + 28, i + 42, i + 56, i + 70 to n (in
that order, because the absolute values of the numerator and denominator of β
are smaller for r small). During the computation on an elliptic curve we may
precompute the modular reduction needed for the next curve.

First Phase. We choose B = 402 so that there are 79 primes p1, . . . , p79 < B.
Additionally we choose v = 530, ei := !logpi

v" and compute k =
∏79

i=1 pei

i .
Then the first phase consists in computing Q = k · P. This can be done effi-
ciently without inversions using Montgomery’s formulae [19]. Finally we do a
gcd computation to check if this computation already yields a nontrivial divisor
d of n (this is necessary for our primality test, see below). If this does yield a
nontrivial divisor of n we can continue the computation modulo n′ := n/d with
Q′ := Q (mod n′).

We restricted v to the value of 530 instead of v = (q+1+2
√

q)/16 corresponding
to Equation (2) with yr ≤ q ≤ za since the probability that a greater power of pei

i

divides ord(P ) was seen to be very low in simulations for candidates in our setting,
see [11]. So the reduction of v leads to a considerable speedup of ECM.

Continuation. As second phase for ECM we choose the improved standard
continuation as described in [3, Section 3.2] and [11] which may be realized
using Montgomery’s arithmetic. We choose C = 9680 and let Q = k · P denote
the result of the first phase. In the continuation we compute sequentially the
points 2 ·Q, 4 ·Q, . . . , 2t ·Q. Then we can write every prime q with B ≤ q < C
in the form q = 2(st ± r) + 1, with 1 ≤ r ≤ t. This enables us to test whether
q ·Q = O holds modulo a divisor d of n by checking whether 2r·Q = ±(2st+1)·Q
holds modulo d. If l ·Q = (Xl : − : Zl) for l ∈ N this can be done by checking if
d | X2rZ2st+1 −X2st+1Z2r which in an implementation amounts to computing
gcd(n, X2rZ2st+1 − X2st+1Z2r). Instead of computing every gcd separately we
may compute d0 = gcd(n, T0,0) where T0,0 =

∏
r,s (X2rZ2st+1 −X2st+1Z2r) for

all relevant pairs (r, s) which correspond to a prime q (or a pair of primes) as
above.

If d0 is composite this implies that several prime divisors were found at once. In
that case we may try to recover those prime divisors by splitting the product T0,0

into subproducts T1,0 =
∏

some r,s (X2rZ2st+1 −X2st+1Z2r), T1,1 = T0,0/T1,0

followed by a computation of d1 = gcd(d0, T1,0), d2 = gcd(d0, T1,1) = d0/d1. If
1 �= d1 �= d0 we successfully reconstructed a finer factorization d0 = d1d2. This
process may be repeated recursively to eventually compute a decomposition of d0

into prime factors. We refer subsequently to this structure as the tree structure
and call the Ti,j the product tree.

In our design we compute first T1,0 and T1,1 and then T0,0 = T1,0T1,1 . To
have a chance of 50% to split a composite d0 into nontrivial d1, d2 we (once
for all) choose the (r, s)-pairs which contribute to T1,0 randomly from all pairs.
Due to the parameters chosen, there are 1116 primes in the continuation so
that there are at most �log2 1116� = 11 levels of recursion or equivalently, a
product tree of height 11, if we want to recover in all cases all information that
the continuation may provide. We limit us to a height of 3 so that there are 15
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values T0,0, T1,0, T1,1, . . . , T3,7 to be stored. Since we use that tree structure also
as a basis for our primality test we compute d0 = gcd(n, T0,0) and proceed to
compute d1 = gcd(d0, T1,0) if d0 > 1. Then we compute d2/d1 and depending
on whether d1 > d2 or not we continue by computing d3 = gcd(d1, T2,0) or
d3 = gcd(d2, T2,2). Likewise we continue to compute d4 = gcd(d3, T3,i) for an
i ∈ {0, 2, 4, 6}. Consequently we end up with precisely 4 gcd computations after
the continuation. See [11] for more details.

We choose t = 30 so that there are only 16 different values for r which occur
in a representation of a prime q considered in the continuation. Therefore we
only need to keep 16 points of the form 2r ·Q in memory while s runs from 1 to
162. Furthermore a pair (r, s) may represent two primes at once. Our choice of
t reduces the number of 1116 primes to precisely 1024 pairs.

Primality Test. We know that smooth cofactors n ≥ za are composite and that
composite numbers n < za are of the form n = p · q with p, q prime, because we
assume that the trial division removed all small prime factors less than 100,000.
Assuming p < q this leads to p ≤ 774,593. Then for every elliptic curve Ep over
Fp we have #Ep ≤ 776,353 and we may assume 16 | #Ep such that the greatest
prime dividing #Ep is bounded from above by C̃ := ṽ := 48,522. For the same
reason every prime whose square divides #Ep is less than B̃ := 220. We could
use ECM with the parameters v, B, C replaced by ṽ, B̃, C̃ to search for p and
thereby checking primality. But the values of v, B, C we choose for factoring do
not differ significantly from those given here. In fact, an analysis of the orders
of the starting points on the curves of our family modulo all primes p ≤ 774,593
showed that we may use the same ECM parameters for factoring and primality
testing. This enables us to factor and test primality at once. Therefore we need
no additional circuitry for a primality test.

This primality test fails if we encounter a composite n = p · q where p and
q have, in view of ECM and our parameters, the same order characteristics for
all 84 curves. That means that for each curve one of the following three cases
applies: (a) the orders modulo p and q both divide k (first phase); (b) p and
q are both detected by the same (r, s) pair (or the same class of (r, s) pairs
since we grouped those into classes by restricting the product tree); (c) p and q
are not detected at all. If p and q differ significantly it is unlikely that (a), (b)
or (c) applies to them for each curve. The most critical situation arises when
100,000 ≤ p, q ≤ 774,593, as this maximizes the probability of (a) or (b) being
applicable. Those p and q lead to 1,377,153,921 squarefree composites n = p · q.
We analyzed all 84 curves for all those composites and searched for critical n
which would fail the primality test. Table 1 shows the number and percentage of
those composites n which will not be factored after the given number of curves.
If we assume that every cofactor output by the sieving process leads to four
composites of the form p · q as discussed above and if we assume that every
such composite passes at least 12 curves then Table 1 shows that at most a
fraction of ((1 + 7.3 · 10−7)8 − 1) < 6 · 10−6 of the relations get lost because of
semi-smooth cofactors which remain composite after the ECM processing. In
reality this number should be even smaller.
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Table 1. Average number and percentage of squarefree composites n = p · q missed

# curves 6 12 18 24 30 84

missed 7.4 · 105 1,009 3.5 0.03 < 1.7 · 10−3 0

% 5.4 · 10−2 7.3 · 10−5 2.5 · 10−7 2.2 · 10−9 < 1.2 · 10−10 0

Performance of ECM. The performance of ECM as a primality test has
already been discussed above. Software simulations give evidence that 84 curves
suffice to factor most candidates possible. With a set of 84 curves we expect
to be able to factor the norms successfully for at least 99.5% of all candidates
meeting both the algebraic and the rational semi-smoothness criteria.

4 Hardware Estimates and Implementation
Considerations

The objective of our architecture is an AT-efficient design of ECM that for
parameters of interest can be implemented with existing technology. In this
section we briefly describe the area and time complexity resulting from our
choice of algorithms and derive estimates for the overall performance of our
design when being applied to the above NFS parameters for RSA-1024.

4.1 Modular Arithmetic

The proposed design requires modular multiplication, squaring, addition,
subtraction, and gcd computations. For performing the modular arithmetic op-
erations, we choose Montgomery residues that enable an efficient method for
modular multiplication [18]. Montgomery’s algorithm replaces divisions by sim-
ple shift operations and, thus, is very efficient in hard- and software. The method
is based on a representation of the residue class modulo an integer n. The cor-
responding n-residue of an integer x is defined as x′ = x · r mod n where r = 2m

with 2m−1 < n < 2m such that gcd(r, n) = 1. Since it is costly to switch al-
ways between integers and their n-residue and vice versa, we will perform all
computations in the residue class.

Modular subtraction and addition can be computed with a single circuit using
simple carry ripple adders (CRA). To guarantee a low latency, operations are done
word-wise at an appropriate word size and corresponding number of words. An ef-
ficient architecture for modular multiplication is described in [24] and seems suit-
able for our design. Squaring will be realized with the multiplication circuit since a
separate squaring circuit would unnecessarily increase the overall area-time (AT)
product. A variant with carry ripple adders has been implemented and analyzed
for the use with ECM in [20]. The architecture enables a word-wise multiplication
and is scalable regarding operand size, word size, and pipelining depth.

For the required gcd computations and modular inversions, we adopt the
(extended) binary euclidean algorithm [17] which can easily be implemented
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with the presence of a subtraction hardware and some registers. As additional
functionality, two registers must perform a simple shift operation (equivalent to a
division by two). Since the (extended) gcd operations are always performed after
the actual point operations, we can use internal registers for the computation
and do not need additional hardware.

4.2 Factorization Unit

A detailed analysis of the modular arithmetic underlying a hardware implemen-
tation of ECM can be found in [20] and its modification for this contribution is
summarized in Appendix A.

ECM Cluster. Excluding the time for pre- and post-processing, for the 1024-
bit parameters discussed above a single candidate requires a total of 14 ms on
the rational and 29 ms on the algebraic side if we assume a (realistic) clock
frequency of 240 MHz. For the rational and algebraic ECM unit, the overall
transistor count amounts approximately to 290,000 and 340,000, respectively.
Assuming standard 0.13 μm CMOS technology, the silicon area required for an
ECM cluster, i. e., 6 ECM units together with the reduction unit, is no more than
4.92 mm2 (rational) and 5.76 mm2 (algebraic). For details on the complexity
estimate of the required area and time, we refer to Appendix A. Figure 1 shows
the basic layout of a factorization unit consisting of the norm evaluation, the
division pipeline, a central control unit with memory, and the ECM clusters.

evaluation
norm

trial division
pipeline

central control unit

reduction
unit

ECM ECMECM

ECM ECM ECM

reduction
unit

ECM ECMECM

ECM ECM ECM

reduction
unit

ECM ECMECM

ECM ECM ECM

memory

ECM clusterECM cluster ECM cluster

Fig. 1. Basic layout of a factorization unit
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Division Pipeline. For the pre-processing of presumably semi-smooth num-
bers, we perform a trial division by 9592 primes and 108 prime powers up to
100,000 which is realized by a pipelined structure. Once the pipeline is filled it
can handle all divisors at a rate of approximately 330 (rational) and 210 (alge-
braic) numbers per second at a clock rate of 240 MHz. This is sufficient since
trial division is done on each chip. The estimated area consumption of the archi-
tecture is approx. 60,000 and 75,000 equivalent logic transistors (0.17 mm2 and
0.21 mm2) on the rational and algebraic side, respectively.

Central Control Unit. Per chip, we assume a central control unit taking care
of all incoming pairs (a, b), the respective factors found during trial division, the
computation of the curve parameters, and the corresponding results from the
ECM stages. The central control unit can be realized with a standard CPU core
attached to some memory for keeping track of the numbers coming from the trial
division pipeline and their factorization. We estimate such a unit to consume no
more than 1 mm2 of silicon area.

For a moderate chip size of 147 mm2, the size of a Pentium 4 processor, we
can group 174 rational or 150 algebraic ECM units (29 rational or 25 algebraic
clusters) on a single chip.

4.3 Application to TWIRL

For the discussed NFS parameters, when combining our design with TWIRL
we estimate that it suffices to handle about 1000 sieve locations per second (cf.
Section 2.1). Basing on software simulations, we assume that on the rational side
on average 61 curves are used for the factorization of one norm. This requires
a computing time of 0.8 seconds per norm. On the algebraic side on average 70
curves are used, this results in a factorization time of 2.0 seconds per algebraic
norm. With 5 chips of the size of 147 mm2 (each including 29 ECM clusters) up
to 1080 rational norms can be factored per second. With 6 chips of the same size
(each including 25 ECM clusters) up to 440 resulting candidates can be checked
on the algebraic side. Thus, for the discussed parameters, about 11 chips of
standard size should suffice to substitute the diary logic from TWIRL and to
compute almost all of the occurring cofactor factorizations.

5 Conclusion

The above discussion shows that the integration of ECM with a diary-free
TWIRL results in a sieving design with a significantly simpler layout, but basi-
cally the same performance as the original TWIRL. For parameters as currently
expected for an NFS-based factorization of RSA-1024, the additional circuitry
can be expected to fit on about 11 chips of standard size and moderate complex-
ity. Due to its moderate technological requirements, our design might also be of
interest for being used in connection with “classical” sieving implementations.
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A Detailed Cost Estimates

To derive detailed cost estimates for our design, if possible, we provide the exact
area and time complexity for the chosen algorithms. However, some algorithms
have a non-deterministic runtime and upper bounds on the time complexity are
assumed. Hence, the overall estimate should be seen as an upper bound on the
time and area complexity. In the sequel, let m = �log2 n� be the bitlength of
the modulus and let e be the number of words of size w, required to represent a
number of size of m bit.

A.1 Complexity of the Basic Building Blocks

For each operation, the area and time complexity is given with respect to the
parameters m, e, and p. We will include Tinit = 2 cycles for initialization of the
ALU at the beginning of the actual computation.
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Memory and Registers: We will take the quite realistic area estimates for an
0.13 μm CMOS process from [23]: For logic, the area per transistor is assumed to
be 2.8 μm2. Due to the highly regular structure, DRAM requires approximately
0.2 μm2 per bit, equivalent to 0.07 of the area per transistor for logic3. For our
implementation, we also require SRAM cells which can be clocked with higher
frequencies than DRAM and do not need any refresh cycles. SRAM requires less
clock cycles for reading and writing but has the disadvantage of an increased area
demand for which we will assume 1.5 gate equivalent (NAND) or 6 transistors.

We assume an Arithmetic Logic Unit (ALU) with a certain amount of inter-
nal registers which are used frequently as input and output to the arithmetic
functions. For our estimate, we pick SRAM at the cost of 6 transistors per bit for
the implementation of such. For tables and larger memory blocks for which we
can tolerate a higher latency we choose simple DRAM. For the relatively large
memory blocks, we take care of the additional area for address, row, and column
decoding by introducing some overhead.

Modular Addition and Subtraction: With the algorithms and architectures
specified in [20], subtraction requires in the worst case 2 · (e + 1) clock cycles,
addition 3 · (e + 1) clock cycles, where e = �m

w � is the number of words. Hence,
the maximum time for an addition or subtraction is bounded by

tadd/sub = 3 · (e + 1) + Tinit

clock cycles. A single full adder (FA) can be built of 3 NAND and 2 XOR gates,
summing up to 24 transistors in standard CMOS technology. With w being the
the required number of FAs, we can construct the CRA for approximately

Aadd/sub = 24 · w + 500

transistors with an assumed overhead of 500 transistors for the internal control
logic.

Modular Multiplication: The number of clock cycles per multiplication is
given by

tmul/squ =
⌈

m

p

⌉
· (e + 1) + 2p + Tinit,

where p is the pipelining depth of the design [24]. For standard CMOS technology,
the area consumption of the multiplier is

Amul/squ = 4 · (84wp + 25p− 22w)

transistors. Note that not all values for p are reasonable (see [24] for possible
kernel configurations). A word-width of w = 64 bit and a pipelining-depth of
p = 4 processing elements seems to be a good trade-off for speed and area
consumption and is chosen in our context.
3 This corresponds to the average area usage of a transistor of a Pentium 4 processor

with 55 · 106 transistors on a silicon area of 147 mm2.
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(Extended) GCD Computation: The binary gcd architecture for bitlength
m requires in the worst case 2m subtractions and some cycles for multiplexing
(shifting can be hard-wired). For the sake of simplicity, we leave out a detailed
analysis of the average runtime of the binary gcd and assume as upper bound

tgcd = 2m · ((e + 1) + Tinit)

clock cycles to finish. Prior to each ECM iteration, the precomputation of the
required curve parameters needs two modular inversions, which can be computed
with the binary extended gcd. The runtime for the algorithm in hardware is at
most

tinv = (4m + 4) · ((e + 1) + Tinit)

clock cycles [17]. We require no additional register since at the time of the ex-
tended gcd computation, all registers for ECM phase 2 are available.

Since we use the ALU for performing the gcd, no additional subtraction circuit
or additional registers are required. We assume 2000 transistors for the additional
control logic.

Trial Division Pipeline: The trial division by 9592 primes and 108 prime
powers up to 100,000 can be realized by a pipelined structure of 10 division
circuits. For each division circuit we need two m-bit registers (for the input and
the result), two 17-bit registers (for the intermediate result and for the operand),
and a 17-bit adder. For the actual division, a simple shift and subtract method is
applied, requiring at most m subtractions of 17-bit precision. Since subtractions
are performed by additions of the two’s complement (plus 1), we can directly use
additions by storing the two’s complements of the prime powers. The division
of a candidate of m bit by a prime power of 17 bit requires no more than
tdivision = 3 ·m + 50 clock cycles, where the 50 clock cycles are an upper bound
on administrative cycles required to initialize the circuit prior computation and
to send the result to the central control unit.

Since the division circuit is “too fast” for our purpose, we suggest to use a
single circuit for 1000 primes and prime powers by adding required control logic
and additional memory to the circuit. Hence, a pipeline of 10 units can handle all
divisors at a rate of approximately 330 (rational) and 210 (algebraic) numbers
per second at a clock rate of 240 MHz.

The estimated area consumption of the pipeline, including internal control
logic, registers, and memory amounts to approx. 60,000 (rational) and 75,000
(algebraic) equivalent logic transistors. Note that the absolute latency of up to
29 ms of the division pipeline is not relevant once the pipeline is filled and a
constant throughput is reached.

Reducing the Curve Parameters: The reduction of precomputed parame-
ters for the initialization of ECM requires additional circuitry. We propose to
group the ECM units in clusters of six, with a single reduction circuit per clus-
ter. The reduction circuit prepares the next parameters for ECM and operates
concurrently to the ECM units. It stores the six (fixed) input values, and two
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intermediate values of size of 17 kbit in DRAM. With a pipelined DRAM to
SRAM circuit for prefetching memory blocks and with a simple shift and add
circuit based on word-wise addition (word size w), we assume the total area of
such a reduction unit to be no more than Areduction = 16,100 transistors, in-
cluding memory, required logic for the computation and for the distribution of
the results. The required time per reduction is bounded by treduction = 400, 000
cycles for the largest input. The six inputs are of different size, and we certainly
can reduce six parameters during the computational phase of ECM.

A.2 Area and Time Complexity of a Single ECM Unit

The precomputation of the curve parameters x̃, z̃ and (t+2)/4 can be done with
the functionality discussed above, together with some of the registers available
from phase 2. Prioritizing the use of additions and, conservatively, estimating
the time for a multiplication by 2 or 4 (shifting) as tadd/sub, the computation of
x̃, z̃ and (t + 2)/4 amounts to

tprecomp = 6 · tmul/squ + 14 · tadd/sub + 2 · tinv

clock cycles.
Following [20], phase 1 requires a total of 12 registers. With t = 30, the precom-

putation of the table in phase 2 requires a total of 32 = 2·16 registers of length of m
bit for 2r ·Q with r ∈ {1, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 25, 27, 30}. We need
additional 15 registers for building the tree according to Section 3.2, amounting
to a total of 59 registers of SRAM, i. e.,

ASRAM = 59 · 6 ·m

equivalent logic transistors. The precomputation time for the table amounts to
8 point duplications and 10 point additions:

ttable = 8 · tpoint dup + 10 · tpoint add = 100 · (tmul/squ + tadd/sub)

We can determine the runtime and area consumption of both phases on basis
of the underlying ring arithmetic and the corresponding upper bound of the
runtimes. A setting with mr = 216, ma = 350, w = 64, p = 4, er = 4, and ea = 6
yields tadd,r = 3(e+1)+Tinit = 17 (e = 4), tadd,a = 3(e+1)+Tinit = 23 (e = 6)
and tsub,r = 12, and tsub,a = 16 clock cycles. For this configuration, a modular
multiplication of full length takes tmul,r = 280 and tmul,a = 626 clock cycles
for the rational bit length mr = 216 and for the algebraic bit length ma = 350,
respectively.

For a single gcd we require at most tgcd,r = 2160, tgcd,a = 4900 cycles. Hence,
the total cycle count for both phases and for a single curve is no more than

tECM = 6500 · tadd/sub + 10700 · tmul/squ + 5 · tgcd + tprecomp

clock cycles including the precomputation time for the table (cf. [11]). Excluding
the time for pre- and post-processing, a single candidate on the rational and
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algebraic side requires a total of tECM,r = 3.2 · 106 and tECM,a = 6.9 · 106 clock
cycles, respectively. If we assume a frequency of 240 MHz, checking a candidate
with one curve requires approximately 14 ms on the rational side and 29 ms on
the algebraic side. For reading values from the DRAM in phase 2, we assume an
efficient SRAM-based prefetch circuit.

For implementing a single ECM unit capable of testing a single curve at a
time, we need

AECM = Amul/squ + Aadd/sub + Agcd + ASRAM + ADRAM + Ak + Acontrol

equivalent logic transistors, where Acontrol is the additional logic required to
control both phases of ECM, the internal gcd, and fast DRAM to SRAM logic.
We assume the control logic to consume no more than Acontrol = 100,000 equiv-
alent logic transistors which is a fairly conservative estimate4. The ECM unit
includes a barrel shifter composed of D-flip-flops (48 transistors per bit) for the
589-bit scalar k required for the point multiplication k · P in phase 1. Further-
more, a DRAM memory block stores the (s′, r′) pairs for all primes between the
last prime of the scalar k and C = 9680 for phase 2. The pairs (r′, s′) are se-
quentially read from memory and are used to control the second phase of ECM.
Note that we can compress the information of (r, s) to smaller values (r′, s′):
The actual value of s is stored in a small 7-bit counter and is simply increased
when the 1-bit value s′ is equal to ’1’, leading to a point addition of 2st · Q in
phase 2. Hence, only a single bit of memory is required for s′. The value of r′

points to the corresponding table entry for 2r ·Q . With t = 30, we require only
4 bit for r′. A total of 5120 bit DRAM for a total of 1024 pairs (resulting from
1116 primes) is required. For the rational and algebraic ECM unit, the overall
transistor count amounts approximately to 290,000 and 340,000, respectively.
Assuming a standard 0.13 μm CMOS process, a single ECM processor requires
no more than 0.81 mm2 (rational) and 0.95 mm2 (algebraic) area of silicon.

4 For comparison: A simple microcontroller such as an 8051 derivate can be realized
with 40,000 transistors.
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Abstract. The multi-stage coordinated attack (MSCA) bring many
challenges to the security analysts due to their special temporal an spa-
cial characteristics. This paper presents a two-sided model, Janus, to
characterize and analyze the the behavior of attacker and defender in
MSCA. Their behavior is firstly formulated as Multi-agent Partially Ob-
servable Markov Decision Process (MPO-MDP), an ANTS algorithm is
then developed from the perspective of attacker to approximately search
attack schemes with the minimum cost, and another backward searching
algorithm APD-BS is designed from the defender’s standpoint to seek
the pivots of attack schemes in order to effectively countermine them by
removing those key observations associated with the system state esti-
mates. Two case studies are conducted to show the application of our
models and algorithms to practical scenarios, some preliminary analysis
are also given to validate their performance and advantages.

1 Introduction

Among the diverse attack variants, the most destructive and difficult one to
detect are those that occur in stages over time and cooperated by a group of at-
tackers/attack parties, which is called multi-stage coordinated attacks (MSCA).
To accomplish such a compromise, attacker needs to undergo a process of re-
connaissance, penetration, attack, and exploit. Meanwhile, a group of attackers
need to plan and cooperate each other for their common goals by resource/tools
sharing, task allocation, information communication and synchronization. Due
to the special characteristic of MSCA, the simple combination and correlation of
some individual countermeasures can hardly provide effective safeguard for the
computer networks with distributed potential vulnerabilities. An ideal approach
not only considers the system state transitions (for multi-stage) but also handle
interactions between attacker’s joint actions (for coordinated).

Rather than focused on the development of specific countermeasures, this
paper sheds light on the modeling and analysis of MCSA from a high-level
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viewpoint. In general, we envision a framework in which the security-related
information (key observations) of the dominant hosts in the computer networks,
can be utilized to characterize their trust relationships and causal vulnerabil-
ities. We also envision that attacker capabilities and attack scenarios can be
constructed and represented in terms of particular observed preconditions, so
that collusive behaviors of multiple attackers can be isolated and multi-stage
attacks can be mitigated in case of further compromise. The hope is that those
two concerns, just like two sides of one coin, from the standpoints of defender
and attacker respectively, can be combined together to achieve a complementary
perspective for the derivation of more generic models of attacker and defender,
as well as the development of effective methods and techniques for the detection
MSCA. We propose an analytical model named Janus1(Joint ANlytical model
with two Unified Shields) in this paper, which essentially formulates the be-
havior of both attacker and defender as Partially Observable Markov Decision
Process (POMDP) by taking into account their specific concerns. Furthermore,
two algorithms with apparently opposite standpoints are derived from the ana-
lytical models, which aim to seek the minimum cost of attack for attackers and
discover the key observations of attacks for defenders respectively. To the best
of our knowledge, this is the first work giving a formal formulation and charac-
terization on MSCA, although some specific attack variants have been modelled
and analyzed.

The remainder of this paper is organized as follows. Section 2 gives a general
attack analysis. In Section 3, a structural framework is formulated to represent
and characterize MSCA’s behavior, some basic properties are also derived. Sec-
tion 4 conducts a specific two-sided analysis based on the model. To show the
application of our proposed model, in Section 5, we illustrate two practical sce-
narios as case studies. Section 6 concludes the paper and points out the future
work.

2 MSCA Analysis

Unlike those traditional attacks, which are usually launched by a single attacker
to a single victim in a short period, MSCA are always conducted by a group of
organized attackers sharing the same objective and attacking tools, and usually
accomplish the intended goal in a long period via a number of collusive oper-
ations. Two key properties, namely, multi-stage and coordinated, cause MSCA
different much from those traditional attacks and therefore hard to be detected
by the typical models. Specifically, those two properties can be further depicted
as follows,

Property 1. [Multi-Stage] or stealthy, which means that each attack is con-
sisted of a sequence of distinct steps or subgoals, while each step represents an

1 The god of gates and doorways in Roman Mythology, depicted with two faces looking
in opposite directions.
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atomic activity conducted by attackers or an achievement of a particular subgoal,
no matter malicious or apparently legitimate

A typical example with this property is remote Buffer Overflow attack, which
firstly involves a surveillance step to search exploitable host in the network,
followed by an intrusion step using a known vulnerability, then followed by a
privilege escalation step to improve the status of attacker for accessing the tar-
get, and some malicious goals, such as data theft or denial of some system
service, are finally achieved. Another specific example of multi-stage attack is
vulnerability-finding-worms, whose life-cycle generally includes four steps [9,20]:
propagation, activation, infection and replication. Such attacks are sequential
chains composed by several atomic operations, while any failure of any step
would cause the attack fail to succeed. The sequential and probabilistic nature
of such attack allow them to be formulated as a Hidden Markov Model (HMM),
in which the current system state always depends on the previous one while
cannot be observed by the operators, and what the operators are able to observe
is those observations (user privilege, file status, etc.) emitted by the underlying
system state. However, in practice, a challenging issue is that the transition be-
tween system states occasionally is separated by a significant temporal interval,
and although a successful multiple phase attack requires the consequential op-
erations in sequence, the atomic operations within a particular phase might be
interchangeable.

Property 2. [Coordinated] or collusive, a group of attackers (or a collection
attack parties employed by a single attacker2) cooperate each other and simul-
taneously compromise a target host or network by joint rather than individual
actions.

A very simple form of coordinated attack is distributed attacks like DDoS [12]
in which perpetrators remotely control a multitude of compromised systems (or
zombie computers) to attack a single target and direct the further attack, thereby
causing denial of service for users of the whole network. The key characteristic
of such attacks is that the compromising point is multiple, the correlated opera-
tions and aggregated effects rather than the individual compromise result in the
successful attack. The attacker involved in the attack does not necessarily mean
human, it also might be artificial agents/tools, malicious scripts/codes acting on
behalf of human, even activated by a single attacker. More, although there is no
compelling need to discriminate the MSCA and coordinated attacks here, it is
worth nothing that the coordinated attacks usually takes several stages, but the
correlation among the independent attackers sometimes are not so closely, and
the sequential property of the actions are not very obvious and even some of
stages may not appear or discernable, while our concern in this paper are those
coordinated attacks with observable stages.

So far, there are many effective measures have been developed to countermine
multi-stage attacks (stealthy) and coordinated attacks respectively, however, the
integration of those two attack forms bring the defender more challenges: (a)

2 We use attacker and attack party interchangeablely in the rest of this paper.
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the coordinated attack is able to escape from intrusion detection (no matter
signature-based or anomaly-based) by breaking the predefined attack patterns
into many apparently innocent pieces (stealthy); (b) some attacker may distract
the IDS by intentionally triggering its alerts and consuming its resources, in this
case, although some of the minor or decoy attacks are detected, the major or
true attack goal can still succeed; (c) attackers can take various forms to achieve
the same goal, for instance, at a particular stage, once one atomic attack has
been detected, it can still take another action to bypass the detection, or launch
some similar attacks simultaneously with the main attack.

More formally, we assume a network consisting a set of potential victims
V = {v1, v2..., vm}, where vi denotes a host in the network with some partic-
ular vulnerabilities {v1

i ...vki

i } that can be exploited by attacker, and a group
of attackers E = {e1, e2, ...en} attempt to crack V during multiple stages T ,
where T = {1, 2, ...l} is a discrete variable. We also suppose that the target
system undergoes a sequence of states S = {s1, s2, ...sn} under attack during
some particular stages, while each attacker ei has his own action space ui. Thus,
the multi-stage coordinated attack scenario can be generalized with following
properties: (1)Pr{ûi|si, vi} is assumed as the probability of a group of attackers
E taking joint actions ûi = u1 × u2 × · · · × un at stage t, with the knowledge
of system state si and victim vi. The elements has following specific meaning;
(2) it is the joint action ûi of E rather than the individual action ui of attacker
ei moves the system state from si to sj ; (3) the joint action ûi depends on the
preconditions of V in state si, while the concurrent action list changes with the
specific sate; (4) from the viewpoint of attackers, they always intend to take the
minimum set of actions (n of û is as small as possible) to achieve their goal (or
subgoals) for the sake of saving cost (Section 4.1) and decreasing the probability
of being detected.

3 A Formal Structural Framework

Based on the understanding of MSCA, this section aims to further characterize
the attacker’s behavior by formulating it as a multi-agent partially observable
Markov decision process (MPO-MDP), and depict the general behavior of MSCA
via some quantitative analysis, several specific properties are also derived from
the model.

3.1 Model Formulation

Although a MSCA case involves a group of heterogenous attackers sharing the
common goal and assistant tools, before achieving the final goal, it is still reason-
able to assume that each attacker is independently acting in its own environment
with uncertain perceptions and actions according to the particular observations.
From the perspective of rational attackers, suppose his/her goal can be ulti-
mately achieved as the system state evolves over a long-run under attacks, an
optimal attack strategy with the minimum cost thereby is the mostly desirable.
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However, due to the inherent uncertainty of the system with respect to the un-
known vulnerabilities and the effects of defense mechanism, neither the evolution
of the system state nor the generation of observations is a well-posed problem to
be optimized directly, a probabilistic rather than a deterministic model therefore
is more suitable to characterize attacker behavior. It is also worth noting here
that the main concern of the model is to characterize the MSCA as a whole
rather than to specify the behavior of individual attacker explicitly. The indi-
vidual attacker takes action according to the estimated true system state, which
is indirectly observed in its own environment, therefore, the general attack is
partially observable for each individual attacker. More, since the next system
state is dependent only upon the current state and the previous overall action
of E, the decision of taking action for MSCA is a Markov process. So POMDP
is formulated here.

Formally, a POMDP model is structurally characterized by four key ele-
ments [1]: a finite state space S, an action space U , an observation space Z,
and a (possibly stochastic) reward r(i) ∈ R for each state si ∈ S, or in an-
other sense, cost ci,j(u) for state transition from si to sj with a particular action
u. As a POMDP model, the interaction between an individual attack party ex

and its operating environment includes a sequence of decision stages as follows:
(1) at state i, the system is in a particular state si ∈ S, and the underlying
state emits an observation zi ∈ Z according to a probability distribution ν(si)
over observation vectors; (2) the attacker takes action ux

i ∈ U in accordance
with a randomized policy based on a probability distribution μ(zi) over actions,
with known zi; (3) ux

i determines a stochastic matrix Pr(ux
i ) = [pij(ux

i )], where
pij(ux

i ) is the probability of making a transition from state si to state sj under
action ux

i ; (4) in each attacking stage, ex receives a reward signal ri, while the
aim of the attacker is to choose a policy so as to maximize the long-term aver-
age of reward, or to minimize the aggregate costs ci,j(û) of transferring system
states. So the Markov chains for state transitions si and sj are generated as a
Markov chain: si ∈ S[ν(si)] → zi ∈ Z[μ(zi)]→ ui ∈ U [pij ]→ sj ∈ S.

As the behavior of each attacker can be formulated as a POMDP, the entire
attack scheme naturally can be modelled as a multi-agent POMDP, or MPO-
MDP. Formally, the meta-action of the attacker U contains the cross product of
all the actions available to each attacker, that is, U = {ûi|ûi = u1

i×u2
i×···×um

i }.
At each stage, each individual attacker chooses his/her action according to the
observation vector, and the atomic actions are then combined to form the meta-
action. For stochastic policies, the overall action distribution is the joint dis-
tribution of actions for each attacker, μ(u1, u2, ...un|z1, z2, ...zn). Furthermore,
some practical constraints have to be considered due to MSCA’s specific char-
acteristic. Since the system states cannot be observed directly, they can only be
represented as a set (or conjunction) of those observations zi that are true in the
state. For example, an attacker e1 successfully cracked v1 as a super-user and
another attacker e3 accessed the log files in v2, the observation zi thus can be
represented as e1(v1) ∧ e3(v2).
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Based on the formulation and the specific concerns, the above parameters in-
volved in the attack scheme can be organized into a family of action-dependent
matrices: m·n×n state transition probability Pr{sj |si, ûi} of matrices F , m·n×q
observation probability Pr{zi|si, ûi−1} (or ν(si)) of matrices H , m · n× n tran-
sition reward matrices Y , and q · m × m action probability Pr{ûi|zi, ûi−1} of
matrices Q (or μ(zi), which essentially equals to Pr{ûi|si, zi}). All the matri-
ces can be populated empirically by attacker with the prior knowledge, and
the more sophisticated the attacker the more accuracy of the value, and from
the attacker’s viewpoint, one critical point is the derivation of reward signal,
which should be maximized provided subgoals are achieved at each stage, i.e.,
max{E[ 1

M

∑M
t=1 rt]}(where M is the total number of stages after the final goal

being achieved), and rt can be specified to quantify the attacker’s intents to the
achievement of the goal. A more practical evaluation metric is the attack cost
ci,j(ûi), which is always expected to be minimized when enabling the transition
of state si to sj , and the objective function is min{E[ 1

|NA|
∑|NA|

i=0 ci,j(ûi)]} where
|NA| is the total number of system states under MSCA, and ci,j(ûi) can be
defined with the significance of the subgoals, as well as the anticipated system
state transitions.

3.2 Basic Properties

More specifically, a particular MSCA scenario can be specified as several con-
cerns: which attacker ei is performing the action ui, what are the preconditions
v̂i of this action, whether other attackers are involved at the current stage, if
so, who, and what concurrent actions have to be taken, what is the system state
(estimated by observations) after the action.

Property 3 [Preconditions]. A successful MSCA depends on the status of
victim V that can be taken advantage by attackers E. At the initial state, V
mainly denotes the set of exploitable nodes in the system, while at other states, it
also includes the conditions/effects that have been generated by previous actions.

Fig. 1. MSCA State Transitions
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The property shows that vulnerability checking and analysis is always the
initial and essential step of MSCA. So far many techniques and tools have been
developed to analyze vulnerability by checking system logs and monitoring spe-
cific monitoring performance metrics, most of which are based on the modeling of
network specifications, such as fault tress, graph models, and performance mod-
els. Attack trees [16] and graph-based network vulnerability analysis [14,18] are
two typical methodologies. For example, attacker trees are usually constructed in
a given specific environment, and then quantify vulnerability by mapping known
attack scenarios into trees; while graph-based approach analyzes risks to specific
network assets and examines the possible consequences of a successful attack.
The analysis system usually requires a database of common attacks (which might
be broken into atomic steps), the information related with network configuration
and topology, and even attacker’s profile as the preconditions, the nodes of the
graph represents an attack stage, and the graph thus enables us to identify the
attack paths with the highest probability of success attack.

Property 4 [Concurrent Actions]. A group of attackers’ joint action ûi keeps
logically consistent in each system state si, which means that action uj

i of at-
tacker ej does not necessarily contradicts with action uk

i of attacker ek, and the
consistency of independent actions should be dependent on that of preconditions.

Naturally, the concurrent actions of a group of attackers is closely related to
the attack efficiency, provided the malicious goal will ultimately be achieved. For
instance, for a group of sophisticated attackers, they may cooperate well and no
member acts any negative effect on the evolved system state, the joint action
at each stage thereby successfully achieves the subgoals (at least generate the
necessary preconditions for latter stages). While for a group of amateur attack-
ers, the same goal might cost more even the same preconditions and tools are
available.

Property 5 [Action Effects]. The effect of the joint action ûi is a list of obser-
vations, which are jointly consistent, without any conflicts, in the system state
si. All or part of the concurrent observations can be taken as the preconditions
by join action ûi for achieving the next system state sj .

Figure 1 illustrates the relationships between the those introduced elements.
Note that the dash line connecting vulnerable node v2 and observation set zi

means v2 does exist, but it is not taken as zi; the dash line connecting v1 and
observation set zj means v1 is an existing vulnerability, but it is not generated
by the join action ûi; The dash circle of si and sj means the system states that
cannot be observed directly. The effect of join action ûi (only those v generated
by the previous join action) and the existing v combine as the preconditions v̂j

for the next action ûj . Those three properties depict a complete MSCA scenario
to capture those key elements of attacker behavior. Although the major step
of a MSCA is the concurrent action, the goal can hardly be achieved without
insightful understanding of its preconditions and action effect, especially when
the goal is expected to be obtained with a desirable cost.



Janus: A Two-Sided Analytical Model for Multi-Stage Coordinated Attacks 143

4 Janus: A Two-Sided Analysis

Although the model is formulated mainly from the perspective of attacker, it
also takes into account those concerns of security analyst, which thereby can
serve both as a semantic model for the characterization of normal behavior and
defender. Two heuristic algorithms are then developed to infer the model.

4.1 Attacker-Centric Analysis

In the model, the system state S contains both normal ones SN and abnormal
ones SA under MSCA, namely S = SN ∪ SA, which are not accessible for the
observers while can be distinguishable via particular observations Z by their
knowledge and skills. However, for a group of attackers, there is no such a com-
pelling need to differentiate all the possible state transitions, rather, they only
need to discern those attack-relevant states by some distinctive features of the
states. Therefore, the states in the attacker’s analytical model derived from the
general one only means those attack-relevant states, i.e., the system states under
attacks SA = {s0, s1, · · · sa}, i.e., SA ⊆ S.

As the model shows, reward signal or attacking cost can be used to evaluate
attacks’ efficiency. Assume a group of attackers E successfully attack a target
by T stages, and the final state is sa, the most desirable reward signal should be
max{E[ 1

T

∑T
i=1 ri]}. Suppose the initial system state is s0, and the system states

are transited in a sequential order, i.e., s0, s1, · · · , sa−1, sa, the cost of transiting
system states can be computed as,

C0,a(E) = c0,1(û0) + c1,2(û1) + · · ·+ ca−1,a(ûa−1) =
a−1∑
i=0

ci,i+1(ûi)

More generally, for si, sj ∈ S, i �= j ∈ [0, a], C0,a(E) =
∑

i,j ci,j(ûi). Obviously,
for coordinated attackers E, the smaller C0,a(E) the better. In most cases, a
smaller C0,a(E) means a smaller set of concurrent actions |U |, which are closely
related to the efficiency of MSCA based on the following observations: (a) a
smaller |U | might require a smaller |V |, which means that a smaller concurrent
action sets usually needs less prerequisites for attack and, (b) a smaller |U |
usually requires a smaller |E|, which means that a smaller number of attackers
are involved in the attack procedure and, (c) small |U |, |V | and |E| reduce the
complexity of attacks, and may have less probability of being detected. Here the
definition of Co,a(E) needs more concern, which essentially guides the evolution
of the model. Generally, attack cost can be measured by time, computational
costs&resources (hardware, software, internet connectivity, user privilege), and
some assistant tools, etc., and it is also relevant with the attacker’s intents,
risks, etc. A desirable C0,a(E) should be a function correlating all those relevant
factors. P. Liu et al. [10] gave a concrete discussion in their proposed AIOS
model composing attacker intent, objectives, and strategies, although the model
is different form ours, the definition of cost can be used as well.

Suppose the goal will be achieved ultimately, none of attackers, excluding
those brute-force ones, would prefer those cost-consuming schemes if they have
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other options of cheaper ones, in another word, they would not use a large set of
concurrent actions if a smaller subset can achieve the desired effect. If so, all our
analysis are meaningless. The observation can be briefly described as follows,

Observation 1. For a particular target which can be finally cracked, provided
prerequisites V , there must exist an optimal concurrent action set U by which
a group of attackers E can achieve the goal with the minimum attack cost
Cmin

0,a (E).

Fig. 2. Attack Scenario

More formally, we model the action-dependance state transition as a directed
state contact graph G =< SA, W >. The edges of the graph W = V × U , where
V is the set of preconditions for a particular joint action, and U is the collec-
tion of joint actions. Each directed edge represents a transition between two
system states si, sj ∈ SA at a certain stage. We represent each edge by a tuple
w =< si, sj , ûi, zi > (zi ∈ v̂i is the exploitable preconditions) where si is the
previous system state and sj is the target system state with ûi × zi. Edge w is
thus si[ûi × zi] → sj . Based on the model and properties, the observation can
be generalized as a corollary,

Corollary 1. In the directed system state contact graph G, attackers E al-
ways intend to achieve the least-weight-path wmin from source node s0 to the
destination node sa.

Figure 2 shows a simple attack scenario: attacker e1 and e2 cooperate to com-
promise a server, where attacker e1 responsible for the stealing of user name and
e2 tries to get password by steal or guess; different means have different cost
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represented by wi; for the final state, attackers are able to access the server using
a legitimate user name and password. From the attack graph we may find there
are several ways to achieve the final goal, among which, one scheme with the
least cost is that e2 steals user name (w5), and e1 cracking the password by brute
Force Guess (w4). We cannot balance w6 and w4 here, since the risk of stealing a
password might be very high. However, checking every possible subset of attack
graph is exponential in the number of attacks, and finding the least-weight-path
actually is NP -complete [17]. Also, it is worth noting here that the formulation
of G is based on the assumption that attackers’ actions have no loops, or exclud-
ing the wrong operations, recoveries, etc. Moreover, insights into the individual
attacker’s behavior might facilitate us to have a better understanding on a group
of attacker’s joint actions,

Corollary 2. For a particular attacker ei, its action-dependence edges can only
be regarded as a collection of discontinuous lines connecting two different system
states.

For a particular attack scheme, ei’s operating traces can also be viewed as
a sequence of state-related actions, namely, τ(ei) = (ui

0(s0), ui
1(s1), · · · , ui

k(sk)),
where ui

j(sj) represents the action ui
j is taken by attacker ei in system state

sj , and it might be null if attacker ei is not involved in a particular attacking
stage. This is based on the assumption that with the knowledge of G, attacker
ei always knows which action to be executed in each stage. The general at-
tacking scheme is thus the combination of all the attackers’ action traces, i.e,
τ(E) = (û0(s0), û1(s1), · · · , ûa(sa)). More generally, a group coordinated attack-
ers’ capacity can be measured by the tuple (U, N), where U is all the available ac-
tions (more specifically, the knowledge, skills, and assistant tools, etc.) available
to the attackers, N is the total number of participators. Although the individual
attackers in practice might have different capabilities and experiences, consid-
ering the common target and the internal sharing of the knowledge/skills/tools
during the coordinated attacks, it is reasonable assume a group of attackers to
be homogeneous. Based on the formulated model and the derived assumptions,
also motivated by the attacker’s incentive, we attempt to develop an algorithm
inspired by those ideas from ant colony optimization (ACO) algorithms fam-
ily [5, 7], called Attackers Nondeterministic Trail Search (ANTS) (formulated
and designed in the Appendix), to search for such an attacking scheme as de-
scribed in corollary 1. In the algorithm, each attacker is viewed as a context-
awareness ant hunting foods (subgoals), while the observations zi at each stage
construct covert particular channels for ants’ action-dependence context. The
criteria for the termination of the algorithm can be set as required, it might be a
goal that has been achieved or a minimum attack cost exceeding a certain thresh-
old, while the subgoals can be viewed as some specific preconditions for the next
target. Considering the specific correlation among attackers (by constraints Ω),
the searching process can be accelerated by their inter-communication (i.e., the
procedure update internal state() and take next action(ÛΩ), which also avoids
the algorithm getting into local optima.
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4.2 Defender-Centric Analysis

Taking the same analytical model as the basis, defender can take advantage the
inferred information for the prevention of MSCA’s exploitation: (1) the model
facilitate us to develop specific techniques to defend against or mitigate the
attacker’s action in both temporal and spacial spans; (2) if the attacker’s graph
G is well modelled by the prior vulnerability correlation and analysis, the pivot
of the attacking scheme thus can be figured out and removed; (3) corresponding
cost-saving countermeasures can be taken based on the estimates of system state
transition with particular defense-objectives.

Vulnerability analysis has been taken as an effective methodology to examine
security-related properties to enhance the dependability and security of com-
puter systems, and many analytical models and tools [3, 4, 15] have been devel-
oped so far. Here, we do not focus our attention on the development of specific
analytical tools, we would rather to examine one method which is capable of fig-
uring out the key stages of an MSCA by assuming relative vulnerabilities have
been recognized and attacking graphs have been constructed [17,18]. For a par-
ticular attacking graph G, if a set of edges connecting essential exploits, namely,
pivots of the attack graph are cut off, the attackers would never achieved their
goal successfully.

Observation 2. An exploit might depend on a set of preconditions v and un-
dergo multiple elementary actions u in order to take advantage of a single vul-
nerability (or subgoal), the vulnerabilities and relative examiners therefore allow
us to derive a cause-consequence relationship for each basic actions.

Same to the construction of attacker graph G, the correlation among vulnera-
bilities can also be extracted as a directed state contact graph G′ =< SN , W ′ >,
where SN is a set of underlying system states representing the state transitions
under known vulnerabilities, while W ′ is the collection of abstracted edges con-
necting s ∈ SN . Note here, defenders not only concern those state transitions
resulting in attacks, but also seemingly normal transitions, therefore, SA ⊆ SN

and |S| ≤ |SA ∩ SN |. Also, W ′ = V ×U , where V is the preconditions and, U is
vulnerable operations, w ∈ W ′ thus denotes the multiple vulnerable operations
u on several objects v that are involved in exploiting a vulnerability, in another
word, changing system states. A corollary characterizing such property can be
generalized as follows,

Corollary 3. In the directed graph G′, there exist at least one path, usually
a collection of edges w′, from the source node s0 to the destination node sn,
without which, graph G′ would turn to a disconnected graph being cut into
several parts.

Obviously, if such edges w′ do exist, and can be found out approximately
by heuristic algorithms in non-deterministic manners, defenders can easily un-
derstand adversary’s intents by figuring out the key observations. Let us revisit
figure 2, if the password can be saved safely causing w6 infinite (or remove the
password), attackers would never gain the access to server, actually this is a
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simple case of key management and password-based access control. Since our
basic assumption is that G′ has been constructed by vulnerability analytical
tools such as model-checking, a backward searching algorithm might be feasible
and efficient to explore the objective with those desired properties. We intend
to develop such an algorithm called Attacker’s Pivots Discovery by Backward
Searching, or APD-BS (shown in appendix), which can also derived from the
ACO algorithm family. The main idea is generalized as follows: (1) select the
most significant vulnerabilities resulting in the system compromised state sn, i.e.,
for those observations with a higher probability Pr{zi|sn, û}; (2) put the ants
on the interested node, which is capable of tracing back those neighbors meet-
ing constraints in probabilistic manners; (3) rank the edges with the amount of
pheromone left by those ants walking from source node to end node, based on
which, the most significant pivots can be figured out; (4) the above three steps
are carried out iteratively until the termination criterion is met.

The main element of this metaheuristic algorithm is ants, which construct
candidate traces (a complete trace is a solution) for the problem by individually
and iteratively computation. A complete trace contains a collection of correlated
observations being emitted during the state transitions between s0 and sn, while
intermediate trace only contains parts of them. At each step, every ant k com-
putes a set of feasible expansions to its current trace and moves to one of these
probabilistically according to a probability distribution pk

ab (ant k from observa-
tion a to the next one b) by combining and specifying following two values, (A)
the attractiveness εab of the move, as computed by some a priori desirability of
that move; (B) the trail level τab of the move, indicating how proficient is has
been in the past to make that particular move, which is essentially a posteriori
indication of the desirability of that move.

Taking into account our specific concern, and based on the pre-knowledge that
H(a) = Pr{a|si, ui−1} and H(b) = Pr{b|si, ui−1}, we define the attractiveness
of the ants’ move as the correlation coefficient of those two probabilities,

εab =
Cov(H(a), H(b))√
D(H(a))

√
D(H(b))

(1)

where Cov(H(a), H(b)) is the covariance of H(a), H(b) and
√

D(H(a)) is the
variance of H(a), and the ant’s pheromone trail update rule can be defined as,

τab = ρτab + τ0(1−
ci

c
) (2)

where ρ ∈ (0, 1] is a coefficient such that 1 − ρ represents the decrease of trail
between two generations of complete traces, and τ0 is the initial trail level which
is usually fixed to be an arbitrary small positive value. c is a moving average on
the cost of the last l traces, and ci is the cost of the ith ant’s trace. We can see
that the cost for system state transition which generates a essentially is taken
as an hidden guidance for ant’s movement, this is reasonable if we consider the
fact that, as we have discussed previously, attackers always manage to seek the
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cheaper actions for system state transition. Henceforth, the probability for ant
k to make the move is given by

pk
a,b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τab·ξ+εab·(1−ξ)∑

x∈tabuk

τax · ξ + εax · (1− ξ)
,

if b /∈ tabuk

0, otherwise

(3)

where the sum is over all the feasible moves and ξ ∈ (0, 1] is a control parameter
balancing the relative importance of the trail τab and the attractiveness εab,
tabuk is an observation dependent set for kth ant’s feasible moves. In this sense,
pk

ab actually is a tradeoff between the desirability of the current move and the
past traces. Note that since the development of our algorithm is based on the
assumption that observatons/vulnerabilities have already been characterized by
some particular assistant tools, three matrices F, H, Q in the analytical mode can
be populated with the prior knowledge in advance and thus serve the algorithm.

5 Case Studies

This section aims to conduct two case studies to show the application of our
proposed models and algorithms to real attack scenarios.

5.1 Intrusion-Aware Automatic and Adaptive Control

The general MPO-MDP model formulated in the section 3 presents us a formal
way to utilize the probabilistic state estimate as a sufficient statistic and optimal
design defense strategies. The basic idea proposed in [8], in which a host-based
autonomic defense system was developed for the provision of the system surviv-
ability. Based on the functional decomposition, defender can select the proper
countermeasures according to the feedback from system state estimator. The de-
composition of the model contains two key parameters: (a) It, all the information
received by the defender prior to selecting the tth action ut, including previous ob-
servation zt−1, action ut−1, and priori information It−1; (b) Bt, the system state
estimate in stage t, which is a n-length column vector, and the ith element bt(i) =
Pr(si|It) representing the relative confidence that state si is indeed the true sys-
tem state in stage t. Here Bt can be taken by the defender as the basis to estimate
current system state via recursive derivation Bt = ϕ(zt, ut−1,Bt−1), where ϕ is an
estimation policy. Based on the probabilistic state estimate, the defender thus can
select the candidate countermeasures according to a response policy μ, namely,
ut = μ(Bt). The defense policy subject to the key element ci,j(u), the cost for
state transition, which can be defined specifically to achieve the tradeoffs among
such costs relevant with system failure, system maintenance, and responses, and
the objective of defender is just to save the total cost during operation stages.

We also have developed an automatic detection coordinator [22] to construct a
multi-layered boundary defense system by being formulated as a MPO-MDP. In
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the model, the general response policy is several parametric anomaly detectors’
coordinated action, i.e., at each detection stage, the basic anomaly detectors
take the concurrent actions associated with their respective observation vectors
and system state estimates. The general reward signal allows those basic ADs to
adjust their behavior periodically to adapt to the changing system states. How-
ever, it it worth noting that the determination of the optimal countermeasures
and the minimization of the given objective function is typically not possible,
and thus approximation methods and heuristics must be applied to find near-
optimal policies, while our ANTS and APD-BS algorithm may serve as useful
tools to solve this problem.

5.2 Worm Enclave Identification

As mentioned, epidemic-style worms can be viewed as a special case of MSCA.
We propose worm enclaves here to represent the host responsible for launch-
ing a propagating worm attack and the links among those infected hosts which
construct the initial stages of the attack tree. Formally, assume the network
communication between end nodes is a directed contact graph G =< V × E >
(notations are self-contained in this section), where vertices V = H × T repre-
senting the hosts in a certain stage t, E is the set of edges representing network
flows between hosts, the worm enclaves is thus a graph Gt at a particular stage
t. A similar problem has been formulated in [21], and they proposed a solution
using random moonwalks. Regardless of the scanning strategies and the specific
exploitable vulnerabilities, their method aims to identify the worm origin with-
out any a priori knowledge about the attack. The key observation support the
algorithm is that the communication flows among the attackers and the asso-
ciated set of compromised hosts constructs a causal tree with the root node of
initial infected host (or worm origin). Obviously, it is hard to detect out the
attacks by observing the communication flows individually from the single host,
since the behavior only can be figured out collectively from a set of hosts and
flows. With the similar motivation, our algorithm APD-BS aims to find out the
worm enclaves in terms of tree-structured subgraphs as defined previously, more-
over, the algorithm can not work in general computer networks, but also in P2P
networks having special link mode.

Firstly, we assume a network contains N hosts and E edges; for a particular
host i, the number of its incoming communication flows at time t is I(t) and
the number of outgoing links is O(t). The system state the host undergoes is
assumed as a set st = {Nrm, Spt, Inf}, where Nrm means that system is
under normal operation; Spt means the system is probably under attacks (it
may be further classified according to the lethality); and Inf means the system
has been infected. For the ant locating in the host, it may take action ui =
{W, B, G} (W is white for normal, B is black for infected, G is gray for suspected)
according to the estimate of st. The cost of action thus can be simply defined as
follows,
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cij(ui) =

⎧⎪⎪⎨⎪⎪⎩
γ1, if sj = Nrm, ui = B (false positive)
γ2, if sj = Inf, ui = W (false negative)
γ3, if sj = Spt, ui = W
0, otherwise

(4)

Secondly, we need to specify the key parameters and main steps of the al-
gorithm: (a) λt = I(t)/O(t) is the ratio of the number of incoming flows and
outgoing flows, p0 = λ0 thus can be initialized using historic traffic records
logged by the networks, and usually λt < 1 for an infected host since it generally
originates more flows than it receives; (2) for a particular ant a locating in the
host i, its observation vector at time t is zt, which is essentially a row vector
composed by I(t) and O(t) and indexed by the nodes the communication flows
respectively, i.e.,

zt =
(

Oh1(t), Oht(t), ..., Ohm(t)
Ih1(t), Iht(t), ..., Ihm(t)

)
(5)

where m ≥ n in order to contains those flows with new or invalid host address.
Thirdly, N initialized ants are put on N hosts individually and then run the

algorithm. For a particular host a, it has to calculate the similarities with its
neighbors, i.e., εab, and thus updates its pheromone with equation (2) and (3).
With a predefined threshold, the algorithm eventually outputs several Pivots,
which constructs the worm enclaves with corresponding flows.

One advantage of the algorithm is that it can be implemented both offline
and online. With the prior knowledge of the network bing infected by worms,
the algorithm is able to find out those origin hosts launching the attacks by static
backward searching and thus further investigation and action can be taken. With
the prior knowledge of the traffic records logged by the network (training data),
the probabilities in the analytical model F, H, Q can be populated and thus
enables the algorithm to work online by dynamic backward searching and take
corresponding actions in time. This actually can prevent the worms from further
propagation in realtime. Also, some computational cost and time complexity
need to be considered for the evaluation of the algorithm. Suppose the algorithm
takes total T steps (time units) for one-pass searching, the time complexity
is O(T ), but one-pass usually does not guarantee its convergence, K times of
running results in the complexity K · O(T ); while for the space complexity, at
each step, ants have to maintain their own observation vector zt. For each ant,
the size of observation vector is 2N , so the overall space complexity is O(N2)
(where N is the number of hosts). For the computational cost, one interesting
case is that ants will not bring much trouble to the normal host, since they will
move away from it in several steps and never return. While for those infected
hosts which have already suffered from worms, the ants contribute a little to the
overall cost compared with those of worms.

6 Concluding Remarks and Future Work

To cope with MSCA, in this paper, we presented a two-sided model, for its
representation and analysis. The model was formulated as a MPO-MDP to
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characterize both attacker and defender’s behavior, and the basic properties
of MSCA were also analyzed. Based on the characterization, an ANTS algo-
rithm was developed to search for attack schemes with minimum action cost;
and another searching algorithm APD-BS was developed to capture the most
significant observations of a successful attack. Two well-posed problems have
been analyzed as case studies, together the preliminary analysis showing their
promising properties.

The future work is mainly focused on the specific implementation and evalua-
tion of our two algorithms, and meanwhile developing more efficient local search
(LS) algorithms to accelerate the convergence speed of those algorithms. Al-
though we have given some preliminary theoretical analysis on the algorithms
in specific application scenarios, both of them are also expected to be evaluated
in simulation-based testing environments with real trace data.
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Appendix: Two Heuristic Algorithms

ANTS: Attackers Nondeterministic Trail Search

The formulated problem essentially belongs to a group of (constrained) shortest
path problems which is NP-complete hard and can only be solved by approx-
imate algorithms. Therefore, to solve this problem, the ANTS algorithm can
be specialized as follows: (a) there is a set of constraints Ω for the concur-
rent actions of attackers; (b) the available actions of attackers is a finite set
U = {u1, u2, · · · , ul}; (c) for every system state, a set of actions can be taken
over U as δ =< ur, us, · · · , uw, · · · >. Assume Û is the set of all possible co-
ordinated actions, we denote by ÛΩ the set of feasible sets with respect to the
constraints Ω. The elements in ÛΩ define the feasible actions. |δ| is the size of a
set δ, i.e., the number of actions in the set; (d) there is a neighborhood structure
among concurrent action sets defined as follows: δ2 is an adjacent action set of δ1

if (1) δ1 ∈ U and δ2 ∈ U , (2) δ2 can be reached from δ1 by an additional logical
action, i.e., δ2 =< δ1, ur >(ur /∈ δ1, while ur ∈ δ2). The feasible adjunct action
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of δ1 is the set containing all action sets δ2 ∈ ÛΩ; if δ2 /∈ ÛΩ, δ2 is viewed as
the infeasible adjunct action set of δ1; (e) an attacking scheme AS is an element
of ÛΩ verifying all the requirements; (f) there is an attack-specific cost Cost to
evaluate every AS.

void ANTS(U, Num)
Initialize (U , Num, minimum cost, z0);
//U is action set, Num is the number of attacker members,
// z0 is preconditions in the initial state
while (termination criteria not met)

repeat in parallel for k = 1 to Num
initialize ant(k);
L = update ant memory(); //understanding of the current concurrent action
while (current system state �= target system state)

compute transition probability (F, H);

take next action(ÛΩ);
L = update internal state();

end while
if (state transited)

compute reward signal(rt);
cost = compute transition cost();
deposit pheromone update(rt);

end if
minimum cost = update minimum cost(cost);
get ant trail(k);

end repeat in parallel
get concurrent action list();
if (attacking goal not achieved)

return(“Attack Failed!”);
end if

end while

APD-BS: Attacker’s Pivots Discovery via Backward Searching

void APD-BS()
Initialize (po, current observation, minimum cost);
//current observation is a set of observations that z0 currently available
//po is apriori probability of observation selection, minimum cost = ∞
Put ants on those N selected nodes with Pr{z0|sn, û} > po;
while (termination criteria not met)

repeat in parallel for k = 1 to N
initialize ant(k);
L = update ant memory(); //get current context info.
while (current observation �= ∅)

for(j = 1 to number of current observation)
a = get current observation[j];
b = neighbor(a);
//neighbor is defined as those observations resulting in the same system state
εab = attractiveness compute(a, b);
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end for
move backward(); //make the move according to equation (3)
compute move cost(); //update the k-th ant’s trace cost
append new observation(tabuk); //update the k-th ant’s new feasible move

end while
cost = get current trace cost();
if(cost < minimum cost)

minimum cost = cost; //update the k-th ant’s moving costs
update trace();//update the k-th ant’s trace

end if
end repeat in parallel
for (each move of ants())

Update trail level();//update N ants’ pheromone trail level by equation (2)
end for

end while
Pivots selection(); //select those observations connecting

//by those edges with the most amount of pheromone



M.S. Rhee and B. Lee (Eds.): ICISC 2006, LNCS 4296, pp. 155 – 165, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Time-Frame Based Trust Model for P2P Systems* 

Junsheng Chang, Huaimin Wang, and Gang Yin 

School of Computer, National University of Defense Technology, 
HuNan Changsha 410073, China 

{cjs7908, whm_w, jack_nudt}@163.com 

Abstract. Two major challenges regarding peer's trust valuation in P2P systems 
are how to cope with strategically altering behaviors and dishonest feedbacks of 
malicious peers efficiently. However, the trust models employed by the existing 
systems do not provide adequate support to coping with quick changes in peers’ 
behavior and aggregating feedback information, then we present a time-frame 
based trust model. We incorporate time dimension using time-frame, which 
captures direct experiences and recommendations' time-sensitivity, we also 
introduce four trust parameters in computing trustworthiness of peers, namely, 
trust construction factor, trust destruction factor, supervision period factor and 
feedback credibility. Together, these parameters are adjusted in time using 
feedback control mechanism, thus, trust valuation can reflect the dynamics of 
the trust environment. Theoretical analysis and simulation show that, our trust 
model has advantages in modeling dynamic trust relationship and aggregating 
feedback information over the existing trust metrics. It is highly effective in 
countering malicious peers regarding strategic altering behavior and dishonest 
feedbacks of malicious peers. 

Keywords: peer to peer, trust model. 

1   Introduction 

P2P (Peer-to-Peer) technology has been widely used in file-sharing applications, 
distributed computing, e-market and information management [1]. The open and 
dynamic nature of the peer-to-peer networks is both beneficial and harmful to the 
working of the system. Problems such as free-riders and malicious users could lead to 
serious problems in the correct and useful functioning of the system. As shown by 
existing work, such as [2, 3, 4, 5, 10, 11, 12], reputation-based trust management 
systems can successfully minimize the potential damages to a system by computing 
the trustworthiness of a certain peer from that peer’s behavior history. However, there 
are some vulnerabilities of a reputation-based trust model. One of the detrimental 
vulnerabilities is that a malicious node may strategically alter its behavior in a way 
that benefits itself such as starting to behave maliciously after it attains a high 
reputation. Another widely recognized vulnerability is the shilling attack [6] where 
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malicious nodes submit dishonest feedback and collude with each other to boost their 
own ratings or bad-mouth non-malicious nodes [7]. 

With these issues in mind, we present a dynamic P2P trust model based on time-
frame for quantifying and assessing the trustworthiness of peers in P2P system. We 
incorporate time dimension using time-frame, which captures experience and 
recommendation's time-sensitivity, we also introduce four trust parameters in 
computing trustworthiness of peers, namely, trust construction factor, trust destruction 
factor, supervision period factor and feedback credibility. Together, these parameters 
are adjusted in time using feedback control mechanism, thus, trust valuation can 
reflect the dynamics of the trust environment. Theoretical analysis and simulation 
show that, our proposed trust model has advantages in modeling dynamic trust 
relationship and aggregating feedback information over the existing trust metrics. It is 
capable to detect and penalize the suddenly misbehaving peers, as well as those that 
exhibit oscillatory malicious behavior. Moreover, the trust model can filter out 
dishonest feedbacks effectively. 

The reminder of this paper is structured as follows. In the second section, the 
related works are introduced; the dynamic P2P trust model based on time-frame will 
be illuminated in the third section; and in the fourth section, a simulation about this 
model is laid out. Conclusions and future works are in the end. 

2   Related Work 

Marsh [8] is among the first to present a formal trust model, incorporating properties 
of trust from psychology and sociology. It is well-founded yet complex model; it does 
not model reputation in the trust model. This model has been further extended by 
Abdul-Rahman and Hailes to address reputation-based trust in virtual communities 
[9]. A number of reputation mechanisms for P2P systems [2, 3, 4, 5, 10, 11, 12] have 
been proposed following the trust models from [8] and [9]. 

To cope with strategically altering behaviors of malicious peers efficiently, Xiong 
and Liu [5] show that the average metric does not cope with “dynamic personality 
behavior. They remedy the problem in their adaptive metric which narrows the 
window of experiences taken into consideration by the average. This indeed increases 
the sensitivity of the metric in respect to changes of behavior. However, their metric 
is unable to detect and penalize oscillatory malicious behavior. If the oscillatory 
behavior is not detected, a malicious peer could always find the rules for trust 
increasing and decreasing and accordingly adjust her cheating behavior to get the 
maximum payoff from the system while also keeping a reasonable reputation [13]. 
Claudiu-Duma investigates the requirements on the dynamics of trust in P2P systems 
and proposes a versatile trust metric which satisfies these requirements [14]. In 
particular, the proposed metric is capable to detect and penalize both the sudden 
changes in peers’ behavior and their potential oscillatory malicious behavior. But, it 
does not differentiate the direct experiences and recommendations, so, one peer can 
not avoid to a certain extent collaborating with the peer that has given it bad 
performances, even if it gives the rest of the network good ones. Huang’s work [15] 
shows that subjective logic can not deal with trust dynamics efficiently. Cvrˇcek [16] 
also shows that Dempster-Shafer’s belief theory as well as the average trust metric, 
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both extensively used for modeling trust, do not have the properties required for 
dealing with trust dynamics. Instead, Cvrˇcek arrives at the conclusion that simple 
formulas might work. Thus, our model uses simple formulae and works well. 

To effectively aggregate feedback information, PeerTrust [5] proposes to use a 
personalized similarity measure (PSM for short) to rate the feedback credibility of 
another node x through node n's personalized experience, the evaluation of 
recommendation credibility is depending on the common set of peers that have 
interacted with requestor and the recommendatory peers. As the increase of peers’ 
quantity, the common set is always very small [17]. This evaluation algorithm of 
feedback credibility is not reliable. Research [11] proposes an algorithm based on the 
maximum likelihood estimation to enhance the veracity of the recommendation 
credibility in the situation of small common set of peers. Eigentrust [3] considers the 
recommendation trust as being equal to the service trust. This metric is not suitable in 
circumstances where a peer may maintain a good reputation by providing high quality 
services but send malicious feedbacks to its competitors. Research [10] proposes the 
weighted majority algorithm (WMA), the main idea is to assign and tune the weights 
so that the relative weight assigned to the successful advisors is increased and the 
relative weight assigned to the unsuccessful advisors is decreased. But, the 
approaches mentioned above don’t consider more complex malicious strategies, for 
example, peers could try to gain trust from others by telling the truth over a sustained 
period of time and only then start lying, colluding peers could inflate reputation using 
unfair ratings flooding. 

3   Time-Frame Based Trust Model 

The main issues characterizing the reputation systems for P2P are the trust metric 
(how to model and compute the trust) and the management of reputation data (how to 
securely and efficiently retrieve the data required by the trust computation) [2]. 
Efficient and secure feedback information management in P2P systems has been 
addressed in [2] and [18]. These systems allow efficient retrieval of all the 
experiences necessary for trust computation, and we will assume the existence of such 
a system underlying our trust model. Thus, the focus of this paper is on trust metrics, 
which, as motivated in the introduction, are capable to cope with strategic altering 
behavior and dishonest feedbacks of malicious peers. 

3.1   Trust Evaluation Algorithm 

To get more accurate trust value of the peer reflecting the ‘fresh’ trust status, time 
property should be considered. Suppose peer i is the end-peer collecting the feedbacks 
about the trust status of peer j during period [tstart, tend]. If tend − tstart is divided into 
different sub-periods {t1, t2, . . . , tn} (t1 < t2, t2 - t1 = tΔ ), we call the sub-period time-
frame. Let successive time-frame be numbered with consecutive integers starting 
from zero. n

ijR  denotes the raw trust value of peer j computed as an aggregation of 

the feedbacks collected by node i in time-frame n. 
There are two kinds of trust relationships among peers, namely, direct trust and 

indirect trust [19]. The direct trust of peer i to peer j can be evaluated from the direct 
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transaction feedback information between i and j. The indirect trust of i to j can be 
computed according to the transaction feedback information of peers who have 
interacted with j. 

In time-frame n, the trust value of peer i to peer j’s service is denoted by , which is 
defined in formula (1). 

( ) ( )

( )

1
n

ir rjn n
ij ij r I j

irr I j

Cr D
R D

Cr
λ λ ∈

∈

∗
= ∗ + − ∗                                 (1) 

Where n
ijD  denotes the direct trust value of i to j, the “self-confidence factor” is 

denoted by λ , which means that how a peer is confident to its evaluation of direct 

trust value. /h Hλ = , h is the number of the direct interactions considered, and H is 

the maximum number to be considered for a peer, and the upper limit for λ  is 1.     

( )I j  denotes the set of recommendation peers, namely, the peers interacted with j 

directly except peer i. ( )r I j∀ ∈  is a recommendation peer, its recommendation 

credibility is denoted by 
irCr . 

Let 
ije  denote the feedback evaluation from i to j in time-frame n, where real 

number [ ]0,1ije ∈ . The direct trust value from i to j is defined in formula (2). 

1n
ij ijD e

m
= ∗                                                 (2) 

Where m is the number of transactions between peer i and peer j in time-frame n. 
The dependable trust value 

ijT  is evaluated based on the raw trust value sequence 

< 1
ijR , 2

ijR , . . . , n
ijR >, n

ijR  is the most recent one. For simplicity, we assume that the 

trust values of peers are updated periodically within each time-frame. For peer j, peer 
i maintains a pair of factors (i.e. current trust construction factor α  and current trust 

destruction factor β ), enhancing the dependability of 
ijT  with respect to sudden 

behavioral changes of node j. α  and β  satisfy the constraint α  < β , which 

implies that more efforts are needed to gain the same amount of trust than to loose it 
[5]. α  and β  are modified when a trust degradation event is triggered by the fact 

that the coming raw trust value is lower than the trust invested. Upon a trust 
degradation event, the target peer j is put under supervision. His α  is decreased and 

β  is increased. If the peer j does not conduct any trust degradation event during the 

supervision period, α  and β  are reset to the initial values. Otherwise, they are 

further decreased and increased respectively, so it can detect and penalize the 
suddenly misbehaving peers. Current supervision period of an peer increases each 
time when he conduct a trust degradation event, so that he will be punished longer 
next time, which means an entity with worse history is treated harsher, thus it can also 
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detect and penalize also to detect and penalize the possibly long term oscillatory 
behavior. 

For each peer j, peer i maintains a trust vector comprising five fields: current 
dependable trust value 

ijT , current trust construction factor α , current trust 

destruction factor β , current supervision period cP erio d , rest of supervision 

period R es s t . Once peer i has calculated the raw trust value ( n
ijR ) for the peer 

j in time-frame n, peer i can update the trust vector for node j in time-frame n using 
TrustUpdate algorithm. TrustUpdate algorithm includes the following parameters: 

initial trust construction factor iniα  and trust destruction factor iniβ , initial penalty 

ratios for trust construction factor, trust destruction factor and supervision r1, r2 and 
r3 such that r1, r2 ∈ (0, 1) and r3 > 1, trust degradation event threshold ε . We 

define ijT  as a reinforcement learning update rule for non-stationary problems [20]. 

If integrating n
ijR   will increase trust value, the learning rate γ = α , otherwise,   

γ = β . 

Algorithm TrustUpdate( n
ijR ,

n
ijT ) 

  Input: n
ijR    Output: n

ijT  

  if n
ijR 1n

ijT −  > ε          //put under supervision 

      ( )1 1rβ β β= + ∗ −  

      2rα α= ∗  
      sRest = sRest + cPeriod 
      cPeriod = r3 * cPeriod 
      γ β=                 // the learning rate 

  else 
      γ α=  
      if sRest > 0 
          sRest = sRest - 1 
          if sRest = 0    //restore α  and β  
              

in iα α=  

              
in iβ β=  

  ( ) 11n n n
ij ij ijT T Rγ γ−= − ∗ + ∗  

  return n
ijT  

3.2   Feedback Reliability 

An important challenge in building a reputation system is to make it robust to 
misleading or unfair feedback. A malicious peer may submit dishonest feedbacks in 
order to boost the ratings of other malicious peers or bad-mouth non-malicious peers. 
The situation is made much worse when a group of malicious peers make collusive 
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attempts to manipulate the ratings. To solve the above problems, we introduce 
feedback reliability and update it after a time-frame. 

Malicious peers can consider more complex malicious strategies, for example, 
colluding peers could inflate reputation using unfair ratings flooding, peers could try 
to gain trust from others by telling the truth over a sustained period of time and only 
then start lying. The effect is mitigated by two properties of our approach. First, trust 
valuation considers second-hand feedback information by in the limited frequency. 
Second, feedback credibility is updated after a time-frame then it can detect dishonest 
feedback quickly. 

In time-frame n, let ( ),CSet i r  denote the common set of peers that have 

interacted with both peer i and peer r, denotes the feedback difference between peer i 
and peer r is denoted by n

irdiff . n
irdiff  can be computed in equation 3. 
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Where n
ijD  and n

rjD  are the direct trust values from peer i and peer r to common 

interaction peer j respectively. 
Based on the feedback difference n

irdiff  between peer i and peer r, peer i can 

update the feedback credibility of peer r in equation 4. 
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Where θ  is the maximal tolerance of peer i to peer r for feedback bias. In this way, if 
a reporting peer r is malicious, its feedback credibility is gradually reduced when its 
opinion does not match that of peer i. And peer r with a lower credibility value 
therefore contributes less to the aggregated reputation at peer i. 

4   Evaluation and Comparison 

We performed initial experiments to evaluate our proposed trust model and show its 
effectiveness in countering malicious peers regarding strategic altering behavior and 
dishonest feedbacks of malicious peers. In our trust model, the quality for a peer to be 
a SP (service provider) is independent of the quality for a peer to be a rater which 
submits feedback after an interaction. We first define the types of qualities of both 
SPs and raters used in our evaluation. Three types of behavior patterns of SPs are 
studied: good peers, fixed malicious peers and dynamic malicious peers. Good peers 
and fixed malicious peers provide good services and bad services without changing 
their qualities once the simulation starts respectively. Dynamic malicious peers alter 
their behavior strategically. The behaviors of peers as raters can be one of the three 
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types: honest peers, fixed dishonest peers and dynamic dishonest peers. Honest and 
fixed dishonest peers provide correct and incorrect feedback without changing their 
patterns respectively. Dynamic dishonest peers provide correct feedback strategically, 
we only consider the dynamic dishonest peers which tell the truth over a sustained 
period of time and only then start lying. Our initial simulated community consists of 
N peers, N is set to be 128. The percentage of the bad SPs is denoted by pb , the 

percentage of the bad raters is denoted by pf . Table 1 summarizes the main 

parameters related to the community setting and trust computation. The default values 
for most experiments are listed. The experiments are programmed in JAVA. 

Table 1. Simulation Parameters 

 Parameter Description Default 
N number of peers in the community 128 
p b  percentage of malicious peers in the community 25% 

 
Community 

Setting p f  percentage of dishonest raters in the community 80% 

λ  self-confidence factor dynamic 

iniα  initial trust construction factor 0.05 

iniβ  initial trust destruction factor 0.1 

ε  trust degradation event threshold 0.05 

1r  penalty ratio for trust destruction factor 0.1 

2r  penalty ratio for trust construction factor 0.9 

3r  penalty ratio for supervision period 2 

 
 
 
 
Trust 

Computation 

θ  the maximal tolerance for feedback bias 0.1 

4.1   Effectiveness Against Strategic Altering Behavior of Peers 

The goal of this experiment is to show how trust model we proposed works against 
strategic dynamic personality of peers. We use the same approach in PeerTrust, we 
focus on the changing behaviors of peers without simulating dishonest feedback in 
this experiment. We simulated a community with all good peers but a dynamic 
malicious peer with dynamic personality. We simulated three changing patterns. First, 
the peer builds trust and then starts milking it. Second, the peer is trying to improve 
its trust. Third, the peer oscillates between building and milking reputation, this peer 
is configured to regularly cheat, with a rate of 25%. That is, after each 30 good 
interactions the malicious peer behaves badly for 10 interactions. The experiment 
proceeds as peers randomly perform transactions with each other and a good peer is 
selected to compute the trust value of the malicious peer periodically. In a time-frame, 
each peer performs 10 interactions with other peers. 

Figure 1(a) shows the computed trust value of both the peer who is milking its 
reputation and the peer who is building its reputation. The trust model we proposed 
can rapidly react to changes in peer behavior, moreover, it is consistent with the 
principle of quick drop and lent raise of trust. A peer is quickly detected for its bad  
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behavior but it cannot simply increase its trust value quickly by acting well for a short 
period so the cost of rebuilding reputation is actually higher than the gain of milking it. 

Figure 1(b) show the computed trust values of the peer who is oscillating between 
building and milking its trust by our trust metric, the conventional average metric and 
the adaptive PeerTrust. The average metric is less sensitive to changes in peer 
behavior. Comparatively, both adaptive PeerTrust and our trust metric can rapidly 
react to changes in peer behavior, and their sensitivities do not depend on the number 
of accumulated experiences. However, the sensitivity of adaptive PeerTrust is the 
same for positive and negative changes, contracting the principle of quick drop and 
lent raise of trust. Moreover, adaptive PeerTrust can not penalize the oscillatory 
behavior of a malicious peer. On the contrary, by adjusting the trust construction 
factor, the trust destruction factor and supervision period factor our dynamic metric is 
capable of dealing with oscillating peers. 

 
Fig. 1. Effectiveness against strategic altering behavior of peers 

4.2   Effectiveness in Aggregating Feedback Information 

This simulation evaluates the immunity of the trust model to the collusion and 
badmouthing attacks. This set of experiments demonstrates the benefit of trust model 
we proposed, peers compare the trustworthiness of peers and choose the peer with the 
highest trust value to interact with. A transaction is considered successful if both of 
the participating peers are good peers, otherwise is a failure transaction. We define the 
rate of failure transactions as the ratio of the number of failure transactions over the 
total number of transactions in the community up to a certain time. A community with 
a lower transactions failure rate has a higher productivity and a stronger level of 
security. The experiment proceeds by repeatedly having randomly selected good peers 
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initiating transactions. For each request, a certain percentage of peers respond. The 
response percentage is set to 5% in the experiments. The initiating peer selects the 
peer with highest trust value to perform the transaction. To measure the effectiveness 
of aggregating feedback information, we simulate an unhealthy environment and set 
the percentage of the bad raters 80% and the percentage of the bad SP 25% which are 
all fixed bad SPs. In the first experiment, bad raters are fixed dishonest peers, and in 
the second experiment bad raters are dynamic dishonest peers, which tell the truth 
over a sustained period of time and only then start lying. 

 

Fig. 2. Effectiveness in Aggregating Feedback Information 

Figure 2(a) shows the rate of failure transactions with respect to the number of 
time-frame in collusive and non-collusive setting. In the non-collusive setting, every 
peer provides transaction feedback information independently, so the rate of failure 
transactions of good peers is gradually reduced. While in the collusive setting, 
dishonest peers’ collusive behaviors hardly disturb honest peers’ judgment. It needs 
more interactions to differentiate good peers from bad peers. However, the system 
still benefits from our approach of aggregating feedback information significantly and 
shows robustness against the collusion. 

Figure 2(b) shows the comparison of the immunity to the collusive behaviors 
between PeerTrust PSM approach and our approach in the situation where bad raters 
are dynamic dishonest peers, which tell the truth over the first two time-frames and 
only then start lying. From the figure, we conclude that our approach enhanced the 
veracity of the recommendation credibility and reduced the rate of fake services 
sooner. Because feedback credibility is updated in an up-to-date manner, trust model 
we proposed aggregates feedback information efficiently and works better than 
PeerTrust PSM in this situation. 
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5   Conclusions and Future Work 

We present a time-frame based dynamic P2P trust model. We incorporate time 
dimension using time-frame, which captures direct experiences and recommendations' 
time-sensitivity, we also introduce four trust parameters in computing trustworthiness 
of peers, namely, trust construction factor, trust destruction factor, supervision period 
factor and feedback credibility. Together, these parameters are adjusted in time to 
reflect the dynamics of the trust environment using feedback control mechanism, thus, 
the trust evaluation has better adaptability to the dynamics of trust. Theoretical 
analysis and simulation show that, the trust model we proposed has advantages in 
modeling dynamic trust relationship and aggregating feedback information over the 
existing trust metrics. It is highly effective in countering malicious peers regarding 
strategic altering behavior and dishonest feedbacks of malicious peers. 

As a next step, we will enhance this trust model with the mechanism for providing 
the incentives for reporting truthful feedback and incorporating context dimension. 
We will also be evaluating our trust model as applied to a peer-to-peer network. 

References 

1. Andy Oram: Peer to Peer: Harnessing the power of disruptive technologies. ISBN 0-596-
00110-X, 2001 

2. Karl Aberer, Zoran Despotovic. Managing Trust in a Peer-2-Peer Information System. In 
the Proceedings of Intl. Conf. on Information and Knowledge Management, 2001 

3. Sepandar D. Kamwar, Mario T. Schlosser, Hector Garcia-Molina. The Eigentrust 
Algorithm for Reputation Management in P2P Networks. In the Proceedings of the twelfth 
international conference on World Wide Web, Budapest, Hungary, 2003 

4. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Managing and 
sharing servents' reputations in p2p systems. IEEE Transactions on Data and Knowledge 
Engineering, 15(4):840-854, Jul./Aug. 2003 

5. L. Xiong and L. Liu. PeerTrust: Supporting reputation-based trust in peer-to-peer 
communities. IEEE Transactions on Data and Knowledge Engineering, Special Issue on 
Peer-to-Peer Based Data Management, 16(7):843-857, July 2004 

6. S. K. Lam and J. Riedl: Shilling recommender systems for fun and profit. In Proceedings 
of the 13th World Wide Web Conference, 2004 

7. Mudhakar Srivatsa, Li Xiong, Ling Liu: TrustGuard: countering vulnerabilities in 
reputation management for decentralized overlay networks. WWW 2005: 422-431 

8. Marsh Stephen: Formalising trust as a computational concept. PhD Thesis. Scotland, 
University of Stirling, 1994 

9. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In 33rd Hawaii 
International Conference on System Sciences, 2000 

10. B. Yu, M. P. Singh, and K. Sycara. Developing trust in large-scale peer-to-peer systems. 
Proceedings of First IEEE Symposium on Multi-Agent Security and Survivability, 2004 

11. Leitao Guo, Shoubao Yang, Jing Wang, and Jinyang Zhou: Trust Model Based on 
Similarity Measure of Vectors in P2P Networks. GCC 2005, LNCS 3795, pp. 836 – 847, 
2005 

12. DOU Wen, WANG Huai-Min, JIA Yan, ZOU Peng: A Recommendation-Based Peer-to-
Peer Trust Model. 2004 Vol.15 No.04 Journal of Software 



 A Time-Frame Based Trust Model for P2P Systems 165 

13. D. W. Manchala. E-commerce trust metrics and models. Internet Computing, 4(2):36–44, 
2000 

14. Claudiu Duma, Nahid Shahmehri, Germano Caronni: Dynamic Trust Metrics for Peer-to-
Peer Systems. Proceedings of the 16th International Workshop on Database and Expert 
Systems Applications (DEXA’05) 

15. Huang Chenlin: The Study of Dynamic Trust Relationship Modeling and Managing. PhD 
Thesis, PhD Thesis. China, University of Nudt, 2005 

16. D. Cvrˇcek. Dynamics of reputation. In 9th Nordic Workshop on Secure IT-systems 
(Nordsec’04), pages 1–14, November 2004 

17. Zhou Jun Feng, Tang Xian, Guo Jing Feng: An Optimized Collaborative Filtering 
Recommendation Algorithm. 2004, Vol.41, No.10, Journal of Computer Research and 
Development (in Chinese) 

18. A. Singh and L. Liu. TrustMe: Anonymous Management of Trust Relationships in 
Decentralized P2P Systems. In IEEE International Conference on Peer-to-Peer Computing, 
pages 142–149, 2003 

19. Thomas Beth, Malte Borcherding, Birgit Klein: Valuation of Trust in Open Networks, 
Proc. 3rd European Symposium on Research in Computer Security -- ESORICS '94 

20. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 
Cambridge, Massachusetts, 1998 



Spatial Context in Role-Based Access Control

Hong Zhang1,2, Yeping He1, and Zhiguo Shi1,2

1 Institute of Software, Chinese Academy of Sciences, Beijing 100080, PRC
2 Graduate School of the Chinese Academy of Sciences, Beijing 100049, PRC

{hong, yphe, szg}@ercist.iscas.ac.cn

Abstract. Controlling access to resources in location-based services and
mobile applications require the definition of spatially aware access con-
trol systems. However, traditional RBAC model does not specify these re-
quirements. In this paper, we present an extension of the RBAC model to
deal with spatial and location-based information, which called LRBAC.
In LRBAC, the final permission set of a user depends on the physical
location in which a user is situated. The ability to specify the spatial
boundary of the role allows LRBAC to be flexible and express a variety
of access policies that can provide tight and just-in-time role activation.
Besides a real position obtained from a specific mobile terminal, users
are also assigned a logical location domain that is application depen-
dent. Then, we extend LRBAC to deal with hierarchies and present how
complex spatial role hierarchies in the location-dependent case can be
generated by applying Cartesian products as an arithmetic operation
over role hierarchies and logical location domain hierarchies.

1 Introduction

The rapid development in the field of wireless and mobile networking fostered
a new generation of devices suitable for being used as sensors by location tech-
nologies able to compute the relative position and movement of users in their
working environment. The widespread deployment of location-based services and
mobile applications has resulted in a strong demand for location aware access
control systems. Models with location-based access control are becoming increas-
ingly necessary in these applications, and are adequately receiving considerable
popularity in the research and industrial community alike.

A user carrying a mobile terminal is on the move (constantly changing posi-
tion) and may request access to certain resources from several sites. These sites
may have different level of trustworthiness or they may be different administra-
tive domains such that the resources available to a user should differ from one
site to another. Thus, in organizations where access to sensitive resources are
limited to a specific location, wireless location based services require means for
obtaining the position of the requesting user in order to mediate the authoriza-
tion request. As another example, consider a large scale company. Suppose that
the set of users includes different categories of employees, such as staff, payroll
manager and sales manager. Each category of employees needs to access differ-
ent information resources. For example staff should be allowed to consult public
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books or telephone directory inside the company buildings. Payroll manager may
be granted the right to read all staff’s payrolls. But he must read those payrolls
in his own office, and not anywhere else in the company. It thus reduces the
possibility of curious employees being able to read their colleague’s payrolls over
the payroll manager’s shoulder. Sales managers are allowed to consult certain
business contracts only in a security area.

To deal with the requirements listed above, an access control model with lo-
cation information is needed. Roles in these policies are no longer static but
dynamic, depending on the physical location at the time of request. Traditional
RBAC [1][12] offers an elegant solution to the problem of managing complex ac-
cess control rule sets. Although RBAC is very useful for modeling access control
in a variety of applications, its role are inherently subject centric [1][2]. It cannot
be used to capture security-relevant context from the environment, which could
have an impact on access decisions. We extend the RBAC model to allow spa-
tial entities to model objects, user locations, and geographically bounded roles.
The roles are automatically (de)activated by the position of the user. Besides a
physical position, obtained from a given mobile terminal, users are also assigned
a logical location domain which is integrated into the spatial role hierarchy.The
evaluation of policies takes into account both role of a requester and the location
domain in which a user is situated. The permissions assigned to users depend
on their positions; objects to which permissions must be granted are located in
that space. In conclusion, the main contributions of the paper are threefold: the
proposal of a formal model for dealing with spatial context of an access control
system; the introduction of the concept of spatial role and effective role; the
complex spatial role hierarchies in the location-dependent case can be gener-
ated by applying cross product over role hierarchies and logical location domain
hierarchies.

The remainder of this paper is organized as follows. In section 2, we briefly
introduce a variety of technologies for location detecting and investigate how to
describe a location. The LRBAC model is presented formally in section 3. In
section 4, we discuss hierarchies in LRBAC. We discuss related work in section
5. Section 6 concludes the paper and outlines future work.

2 Preliminaries

In order to make RBAC spatially aware, we need to first investigate how to
get physical locations and how to describe a location. In this section we cate-
gorize location detection approaches and location description approaches, then
introduce some basic definitions, such as logical location domain and location
mapping function.

2.1 Location Detection

For the system to be able to make authorization decision based on the spatial
dimension in which the user is situated, the mediator must be able to obtain
the location of the mobile terminal where the access request was made from.
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There exists several location detecting technologies with various granularity for
both indoor and outdoor position estimation of mobile terminals. Geospatial
coordinates are usually acquired by using GPS receivers. GPS works properly
only for outdoor determination of the position of a mobile terminal. For indoor
location tracking of mobile terminals one may store civil address information
or location attributes of a room in a Bluetooth device or palmtops with Wi-Fi
cards. When a user hold a device with Bluetooth support enters the room, it can
get the location information of the room through Bluetooth beacons. The type of
location estimation technique used depends on the requirement of accuracy to the
mobile terminal’s position, which is required by the system in the authorization
process. For example, a user requesting access to a secure service limited to a
specific room in a building may require fine granularity in order to ensure that
the user does not try to access the service from the room next door.

Location is a sensitive piece of information;releasing it to random entities
might pose security and privacy risks. To address these issues, we refer to
[18][19].

2.2 Location Description

Location in the context-awareness application needs the modeling of physical
environment and representation of locations. Numerous location models have
been proposed in different domains, and can be categorized into two classes [17]:

– Hierarchical (topological, descriptive or symbolic, such as room).
– Cartesian (coordinate, metric or geometric, such as GPS).

Since the hierarchical location model is good for representation of spatial
relationships and it has the virtue of human readability and self-descriptive,
we adopt it for representing locations. It decomposes the physical environment
to different levels of spaces. For example, the CompanyA is decomposed into
several sub-spaces: Building No.1, Building No.2, Building No.3, Building No.4,
etc. Each of these buildings is divided into smaller composing sub-spaces, until
we reach enough precision. Such a hierarchy is called a space tree, in which each
node corresponds to an actual space in the physical environment. The parent-
child link in the tree implies super/sub space relationships between two spaces.
Figure 1 illustrates part of the space tree for CompanyA. It is up to the location
service designer to decide how to decompose the physical environment.

In LRBAC, we use RLOC to represent the set of real locations. We assume
that areas defined in RLOC cover the whole responsibility domain of LRBAC.
The RLOC can divided into sub domains, called physical location domains de-
noted as ρi, i = 1, · · · , k, which reflect the ability of the underlying architecture
to uniquely map user location into specific rooms, e.g., room 1025. We assume
that underlying infrastructure is unable to distinguish different locations inside
ρi for any i = 1, · · · , k. However, using physical location domains in LRBAC
can be unpractical because physical location domains represent infrastructure of
location detection system but we need the structure location domains reflecting
organizational infrastructure. Therefore, we introduce logical location domains
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Fig. 1. Hierarchical Space Tree

that express organizational location infrastructure and organizational security
policy. For example, within a company we can define logical location domains
representing locations such as departments, public area and even individual
offices.

Definition 1. (Logical Location Domain) The logical location domain defines
the boundaries of the logical space in which the role can be assumed by the user.
We denote with LLOC as the set of all logical location domains.

In general, physical and logical location domains are highly correlated. Logical lo-
cation domains can be defined as composition of physical domains. For example,
allocation of a department in a company can be described by location expression
DepDom = [ρ1, ρ2] as area covered by physical location domains ρ1 and ρ2. Log-
ical location domains can be computed for any real locations by using specific
location mapping function. And the mapping function is application-dependent.

Definition 2. (Location Mapping Function) Let RLOC be set of real locations,
LDOM be set of logical location domains. The location mapping function MapLoc:
RLOC → LDOM, given a real location rp, returns a logical location domain.

Consider the scenario previously discussed in Section 1, we may partition logical
location domain into SADom, SMDom, PMDom, OtherDom, and they represent
security areas in which business contracts are placed, sales managers’ offices,
payroll managers’ offices and the other areas in the company, respectively. Thus,
we can define domain for a company CompDom = SADom + SMDom + PMDom
+ OtherDom. The example demonstrates the idea of using location expressions to
define new domains. Generally, the same position can belong to different logical
location domains. Since logical location domains can be seen as sets, we define
new location domains by using domain operations that are similar to operations
used in set theory, i.e., union, intersection, difference and complementation, etc.
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3 The LRBAC Model

The LRBAC model only uses logical location domain as a context parameter
and logical location domain has semantic and geometric meaning. To specify the
spatial boundary of the role, we introduce the concept of spatial role. In order to
determine the final permissions set of a user in sessions based on user positions,
the concept of effective roles has also been introduced. Using these two central
concepts, we have proposed the formal model for dealing with spatial context of
an access control system. In this section we will present the formal definition of
the LRBAC model. After that we discuss the concept of effective role.

3.1 Formal Description of LRBAC

Based on the formalization of the RBAC model in [1][12], we present a precise
description of an access control model that includes spatial roles. Spatial role
combines the roles with logical location domain and it indicates the spatially
bounded role.

Definition 3. (Spatial Role) A spatial role is a pair (r, ldom), where r is the
role name and ldom the logical location domain of the role. We denote with SR
the set of spatial roles.

The logical location domain defines the boundaries of the space in which the
role can be assumed by the user. Users are assigned spatial roles. Notice that
the same role can be associated with different location domains.

An example of spatial role is the pair (Payroll Manager, PMDom) in which:
Sales Manager is the name of the role; PMDom the role logical location domain.
Through using location mapping function it follows that it is always possible to
determine whether the current logical location domain of a user is contained in a
specified location domain and thus which roles in the session are effective. Next
definition provides the formal semantic of the LRBAC.

Definition 4. LRBAC has the following components:

– U, SR, OP, O, S, RLOC, LDOM stand for users, spatial roles, operations,
objects, sessions, real locations and logical location domains, respectively.

– PRMS = 2OP×O, is the set of permissions.
– PA: PRMS × SR, is a many-to-many mapping permission to spatial role

assignment relation.
– AssignedPrms: SR→ 2PRMS , the mapping of spatial roles onto sets of per-

missions. Given a spatial role sr, AssignedPrms(sr) = {p ∈ PRMS|(p, sr)
∈ PA}.

– UA ⊆ U × SR, a many-to-many user to spatial role assignment relation.
– AssignedSession: U → 2S, assigns a user onto a set of sessions.
– AssignedUser: SR → 2U , the mapping of spatial role onto sets of users.

Given a spatial role (r, ldom) ∈ SR, AssignedUser((r, ldom)) = {u ∈
U |(u, (r, ldom)) ∈ UA}.
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– SessionUser: S → U , is a function mapping each session s to the single user
SessionUser(s) that is constant for the session’s lifetime.

– SessionRoles: S → 2SR, is a function mapping each session s to a set of spa-
tial roles SessionRoles(s) ⊆ {(r, ldom) ∈ SR|(SessionUser(s), (r, ldom)) ∈
UA}.

3.2 Sessions and Roles

SessionRoles(s) corresponds to the roles that can be potentially activated in
session s. In general, if a user is assigned to several roles, it is up to him to
decide which SessionRoles(s) he is authorized to activate. In our work, the roles
which integrated into spatial context information are dynamic in nature and
the user does not select the role to be activated directly. However, depending
on the location in which a user is situated during the session, only a subset
of such roles is effective and permission granted. The roles are automatically
(de)activated by the environment. To determine effective session roles, system
has to assess the containment between current logical location domain and a
specified logical location domain. Therefore, we introduce the concept of effective
role to determine the final permissions set of a user.

Definition 5. (Effective Roles) Effective session roles are defined as the func-
tion ESR: S×RLOC → 2SR such that ESR(s, rloc) = {(r, lext) ∈ SR|(r, lext) ∈
SessionRoles(s) ∧ ldom = MapLoc(rloc) ∧ Contains(lext, ldom) = True},
where Contains(lext, ldom) relationship between lext and ldom holds when ldom
is contained in lext.

Follows from Definition 5, we get the following theorem and the proof of the
theorem is trivial.

Theorem 1. ∀s ∈ S, ∀rloc ∈ RLOC.ESR(s, rloc) ⊆ SessionRoles(s)

Roles to be take effect are selected automatically according to the real location of
the user. Effective roles are the basis for determining whether to grant or reject
an access request. An access request is a tuple (s, rloc, op, o) stating that the
user of session s in real location rloc attempts to perform operation op on object
o, hence (s, rloc, op, o) ∈ S ×RLOC ×OP ×O. The authorization mechanism
intercepts this attempt and only allows it to proceed provided that permission
(op, o) belongs to the set of permissions assigned to the roles that are effective
in s when the session user is in real location rloc.

Definition 6. (Authorization Function) Given an access request ar = (s, rloc,
op, o) ∈ S×RLOC ×OP ×O, ar can be allowed at real location rloc if (op, o) ∈⋃

sr∈ESR(s,rloc) AssignedPrms(sr).

4 Hierarchies in LRBAC

The concept of hierarchy is important in RBAC1 [1] and it reflects the structure
of the organization and the respective responsibilities of the roles. Hierarchies
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of user roles will be used for permission inheritance. Hierarchical LRBAC, i.e.
HLRBAC, adds to LRBAC the support to model hierarchies.The HLRBAC in-
tegrates the spatial context parameter into the role hierarchy and does not store
them in a separate structure which provides a unified framework and is conve-
nient to implement in real applications.

Before modeling hierarchical LRBAC, we introduce a basic role hierarchy for a
location-aware application which is introduced in Section 1. For this, Section 4.1
introduces a sample role hierarchy for this large scale company. After that, we
give a second hierarchy, i.e. logical location domain hierarchy. To show how com-
plex role hierarchies in the location-based application can be generated from ba-
sic role hierarchies, we will outline the properties of partially ordered set required
for our purposes in Section 4.3. For location-dependent access control, we will
create a spatial role hierarchy by utilizing the Cartesian product of partial orders
in Section 4.4. Section 4.5 gives the formal definition of hierarchical LRBAC.

4.1 Basic Role Hierarchy

Here, we will provide a basic role hierarchy containing all the roles of our sample
scenario. Furthermore, we will outline sample permissions of these roles.

Our scenario concerning about a large scale company. There are three roles
in the company: Staff, Sales Manager, Payroll Manager.

– Role Staff : This role stands for staff members. The users assigned to this
role may be allowed to access resources that reserved for public use in the
company, such as consult electronic books and telephone directory.

– Role SM (Sales Manager): This role is assigned to the users that are respon-
sible for sales tasks within the company. The sales manager needs to read
the product prices and business contracts so that he may manage contract
negotiations with client executive manager according to product prices.

– Role PM (Payroll Manager): This role is assigned to payroll manager of the
company. The payroll manager is allowed to read all staff’s payrolls. He is
also determines how much each staff’s salary should be.

Figure 2(a) depicts the partial order of the roles introduced above. Role Staff
is the most junior role. The SM and PM are two most senior roles and their
responsibilities are different.

Fig. 2. Hierarchies for (a)basic roles RH in a company and (b)sample logical location
domain CH
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4.2 Logical Location Domain Hierarchy

In the Section 1, we have mentioned that access control system use spatial con-
text for their access control decisions. Consequently, in location-dependent access
control systems, where there are various logical location domains, there should
be different levels of permissions. If a logical location domain of a user corre-
sponds to a specific physical location implies different permissions, then these
logical location domains should influence the composition of the corresponding
roles in role engineering.

We illustrate this idea by means of a sample hierarchy for protection lev-
els, i.e., the hierarchy of logical location domain. Considering the semantics of
several logical location domains which introduced in Section 2.2, we depict the
hierarchy in Figure 2(b). These logical location domains reflect organizational
security policy for different users. If a user A is authorized to access resources
by restricting he is situated in the public area, then user A will be assigned to
a logical location domain CompDom ∈ CH . The logical location domain Com-
pDom is authorized for a specific permission set PCompDom ∈ PRMS. A user
B which decided to specify the boundaries of the space is within a security area
will be assigned to a logical location domain SADom ∈ CH . The logical location
domain SADom is authorized for a specific permission set PSADom ∈ PRMS.
Analogously, if there is a user C who willing to define the extent of the space is
in the payroll manager’s office, then user C will be assigned to a logical location
domain PMDom ∈ CH . The permission set PPMDom is determined by the same
way.

Change logical location domain like CompDom, SADom and PMDom can
be done easily in the access control policy. In practice, the basic role hierarchy
and logical location domain hierarchy may be more complex than shown in
this example. There are more role and spatial constraints necessary in order to
express fine-granularity access control policy in real-world organizations. We just
use this example to get the idea on how to deal with the problem of different
security levels of location domain in access control and how to construct spatial
role hierarchies.

4.3 Arithmetic over Partially Ordered Sets

We will outline the properties of partially ordered sets required for our pur-
poses. Since the theory of partially ordered sets is described in detail in the
literature, we only describe the aspects that are required to model spatially
context-dependent role hierarchy. For more information, we refer to [9][10].

Definition 7. (Partially Ordered Set) A partially ordered set is a structure
P =< P,≤> such that P is a set and ≤ is a binary relation on P that is
(i) reflexive: x ≤ x, (ii) transitive: x ≤ y, y ≤ z =⇒ x ≤ z, (iii) antisymmetric:
x ≤ y, y ≤ x =⇒ x = y.

Without introducing spatial context information, we can specify role hierarchies
for RBAC with the definition above. We suggest now to model the logical loca-
tion domain itself as a partially ordered set and then apply a specific arithmetic
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over partially ordered sets to compose a new hierarchy, namely, the spatial role
hierarchy. With the help of Cartesian product, we create the spatial role hierar-
chy from the basic role hierarchy and the logical location domain hierarchy as
specified in Section 4.2.

Definition 8. (Cartesian Product of Partially Ordered Sets) Let P1, · · · , Pn be
ordered sets. The Cartisian product P1×· · ·×Pn can be made into an ordered set
by imposing the coordinate-wise order defined by (x1, · · · , xn) ≤ (y1, · · · , yn) ↔
(∀i) xi ≤ yi in Pi

4.4 Spatial Role Hierarchy

In Section 4.2, we provide two sample hierarchies for roles and logical location
domains in a company. In this section, we will present how complex spatial role
hierarchies in the spatial context-dependent case can be generated. For that, we
assume the two hierarchies to be independent. Then, we can create a new role
hierarchy by utilizing the Cartesian product of two partial orders. The resulting
role hierarchy integrates the spatial context parameter into the role hierarchy
for the scenario introduced in Section 1. Thus, it provides location-aware access
control for the company, where logical location domain is considered a spatial
context for the access control decision.

We present this new spatial role hierarchy in Figure 3. It includes all intro-
duced roles, which are the result of the Cartesian product of RH and CH, and
depicts the inheritance relations among these roles which will be described in
detail in Section 4.5. Spatial role (Staff, CompDom) is for all employees of the
company whose logical location domain is the company buildings, i.e., Comp-
Dom. A user who assume role (Staff, CompDom) is permitted to consult public
books and telephone directory. Spatial role (SM, SADom) is for sales managers
of the company whose logical location domain is a security area where business
contracts are placed and (SM, PMDom) is for one sales manager whose current
position is in payroll manager’s office. Obviously, spatial role (SM, SADom) has
the permission to read product price and relevant business contracts, but spatial
role (SM, PMDom) has neither the permission to get contracts information nor

Fig. 3. Spatial role hierarchy SRH = RH × CH
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permission to read payroll. Similarly, spatial role (PM, PMDom) has the per-
mission to read all staff’s payrolls and he also has the permission to determine
staff’s final salary according to some regulations of the company, whereas role
(PM, SADom) has not the same permission because its logical location domain is
SADom. Furthermore, spatial role (PM, SADom) hasn’t the permission to read
contracts because it isn’t consistent with security policy of the company, i.e.,
this operation of read contracts can only be carried out by sales managers. Sales
manager’s permission is effective when his current location is in SADom, whereas
payroll manager’s permission is effective when his current location domain is in
PMDom.

4.5 Hierarchical LRBAC

In this section we give the formal definition of hierarchical LRBAC (HLRBAC).
According to [1][12], the hierarchical level can be defined by introducing a partial
order between roles such that ri ≤ rj means that: (i) rj inherits all permissions
assigned to ri; (ii) users who have been assigned rj have also assigned ri.

Moreover, since in LRBAC we introduce the concept of effective role, we also
assume that (iii) if rj is effective, and thus the user can play that role in a session
s, also ri results to be effective in s.

There are two cases we should consider when discuss inheritance relations
among spatial roles. First, basic roles are different and logical location domains
are the same, such as (Staff, CompDom) and (PM, CompDom). A payroll man-
ager with logical location domain CompDom inherits all the permissions of the
junior role Staff with the same logical location domain.

Another case to be considered is when the basic roles are the same while role
logical location domains are different. Consider two spatial roles (PM, Comp-
Dom) and (PM, SADom) with SADom is contained within CompDom. A payroll
manager with logical location domain SADom necessarily inherits all the per-
missions of the payroll manager with larger location domain.

To summarize, HLRBAC can be formally defined as follows.

Definition 9. (Hierarchical LRBAC) HLRBAC is defined from LRBAC by in-
troducing a partial order between spatial roles.

– SRH ⊆ SR × SR, a parital order over SR, (r1, ldom1) ≤ (r2, ldom2) holds
if r1 ≤ r2 and ldom1 ⊇ ldom2.

– AuthorizedPrms: SR→ 2PRMS such that, given a spatial role sr, Authorized-
Prms(sr) returns all permissions assigned to sr and to all its ancestors, i.e.,
AuthorizedPrms(sr) = {p ∈ PRMS|sr′ ≤ sr ∧ p ∈ AssignedPrms(sr′)}.

– AuthorizedUser: SR → 2U such that, given a spatial role sr, Authorize-
dUser(sr) returns all users assigned to sr and to all its descendants, i.e.,
AuthorizedUser(sr) = {u ∈ U |sr ≤ sr′ ∧ (u, sr′) ∈ UA}.

From the previous definition it follows that the ordering between spatial roles
corresponds to the ordering of position granularities: as the role becomes more
specific while the logical location domain gets smaller. That is, the more senior
roles are those operating on smaller regions.
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Since we adopt the concept of effective role, there is a property about effective
roles. Assume that a spatial role sr2 = (r, ldom2) is effective in a session s and
a real physical location rloc and that sr1 = (r, ldom1) and sr1 ≤ sr2. From the
definition of partial order of spatial role, we infer a fact that the logical location
domain of sr2 is contained in the logical location domain of sr1. This means that
if sr2 is effective then sr1 is also effective. In our example, this means that (PM,
CompDom) is effective when (PM, PMDom) is effective in a certain location.

To summarize, the properties of spatial role hierarchies are given as follows.

Theorem 2. Let s ∈ S, rloc ∈ RLOC, sr1 ∈ SR, sr2 ∈ SR. Suppose that sr1 ≤
sr2. The following properties hold:

– AuthorizedPerms(sr1) ⊆ AuthorizedPerms(sr2);
– AuthorizedUser(sr2) ⊆ AuthorizedUser(sr1);
– sr2 ∈ ESR(s, rloc) −→ sr1 ∈ ESR(s, rloc).

5 Related Work

A number of recent research contributions deals with different approaches to
consider context information in access control decisions [2][5][6][7][8][11][13][14].
These contributions range from abstract high-level models to case studies and
concrete (implemented) software systems. The type of context information that
is used for access control depends on the situation, e.g., for workflow and col-
laboration tasks in [7][11], where context refers to the state of the workflow or
task. In this section, we only consider related work that aims to consider location
context for systems.

Currently, several access control systems with spatial and nonspatial context-
aware extensions have recently been proposed [2][3][6][14]. Even though some
preliminary proposals have been reported adding contextual information, such as
spatial and temporal information to access control mechanisms, such approaches
are simplistic and do not formalize the key components of the systems to give a
sharp and precise definition. Most such models do not provide any means for ex-
pressing hierarchies for permission inheritance. In these works, they store spatial
context in a separate structure and the contexts are considered as an additional
step in each access control decision. In [15], an extension of RBAC is proposed,
the role is automatically activated when the user is in a given position, the posi-
tion itself does not have any semantic meaning but simply a geometric value and
the model is targeted to wireless network applications and does not introduce the
concept of spatial role to deal with geographically bounded roles. Moreover, spa-
tial contexts are implemented as condition functions and spatial contexts are not
integrated into the role hierarchy. Bertino et al. [4] has recently been proposed a
spatially-aware RBAC model called GEO-RBAC. The GEO-RBAC a common
spatial data model is adopted in order to provide a uniform and standard based
representation of locational aspects. GEO-RBAC relies on the OGC [16] spatial
model to model spatial objects, user positions, and roles, namely, locations are
defined in geometric ways, whereas this spatial model hides hierarchical rela-
tionships and it needs considerable extra specification to enable deduction of
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spatial relationships. Instead, we describes logical location domain according to
the organizational security policy, not fully in geometric ways. In GEO-RBAC,
there are two different hierarchies are defined which will result in considerable
expense to compute inherited permission. And GEO-RBAC is to secure appli-
cations in the commercial spatial DBMS and GIS (Geographical Information
Systems). If adopt GEO-RBAC to deal with location-aware applications in the
large scale company which introduced in Section 1, the implementation will be
unnecessarily complex and using GPS based equipment is expensive.

6 Conclusion and Future Work

In this paper we have presented LRBAC model, an extended RBAC model which
supporting location-aware applications. LRBAC relies on the hierarchical loca-
tion model to model spatial objects, making the approach is good for representa-
tion of spatial relationships and human readability. The main innovative feature
of the model is spatial role hierarchies that are generated from basic role hier-
archy and logical location domain hierarchy by applying Cartesian product as
a special arithmetic operation over them. Location domains are integrated into
the role hierarchy. By introducing the concept of spatial role, the spatial bound-
ary of the role can be customized and introducing the concept of effective role
to determine the roles are effective in sessions based on user current position.
Moreover, the logical location domain has certain semantic meaning.

In future work, we plan to extend the LRBAC to support constraints, includ-
ing spatial separation of duty constraints which is able to deal with conflicting
logical location domains, location-based cardinality constraints and location-
based temporal constraints that can address time-dependency of spatial infor-
mation. We also plan to consider more spatial relationships that may exist be-
tween the spatial elements in space, such as Touch, In, Cross, Overlap, Disjoint
etc in [20]. In this paper we have assumed that the location service always re-
turns location information. We plan to extend our model to the consideration of
policies constraining to whom and how location information is to be provided.
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Abstract. This paper proposes a scheme capable of effectively detecting
a malicious node that normally operates during determination of a route
over a mobile ad-hoc network (MANET) but modifies or drops data dur-
ing data transmission or reports wrong information regarding a normal
node, using a report message and a report table that list reporter nodes
and suspect nodes. In the existing schemes, a malicious node that pro-
vides wrong information can be easily identified but cannot be removed
from a network. To solve this problem, the proposed scheme determines
a suspect node as a malicious node when more than k lists of reporter
nodes and suspect nodes are recorded in the report table in case where k
malicious nodes are over the network. The proposed scheme is applicable
to both DSR and AODV routing.

1 Introduction

Most of researches on the MANETs have focused on a wireless channel access
or multi-hop routing based on an assumption that network elements operate
in a friendly and cooperative environment. However, since malicious nodes and
uncooperative situations may occur in an actual network environment, there is
a growing need for a security scheme that guarantees secure communications
between mobile nodes. In fact, researches on the security scheme have been
conducted. Although there are researches on the security of a wire network,
the following matters must be considered in designing a security scheme for the
MANET. First, the MANET has an open peer-to-peer construction. Thus, it is
possible to devise security for a router that separates the inside and outside of a
wire network, but it is difficult to provide security for the MANET since it has no
particular router. Second, a wireless channel is shared by a plurality of nodes.
Since both an authorized node and a malicious node can access the wireless
channel, the network can be easily attacked. Third, network resources over the
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MANET are very limited than over a wire network. In general, a low power
mobile node that uses battery power does not have resources and performance
enough to perform an encrypting process that requires large processing overhead.
Therefore, the low power node is vulnerable to external attacks. Fourth, a change
in the mobility of mobile node or the state of a wireless channel changes network
topology dynamically and remarkably. Nonetheless, mobile nodes always desire
to receive secure communications services from a network regardless of where
they are [1].

The MANET may be used as a military communications network in a war
field, an urgent rescue communication network when a disaster occurs, or a com-
munications network in a temporary meeting. Accordingly, effects on the network
or a society caused when a malicious attacker arbitrarily modifies or damages
data transmitted in the network in such an urgent case, is far more serious than
them in a wire network. Further, the MANET is a temporary communications
network that can be used for a short time or must be used for a predetermined
time and installed again. Accordingly, it is required to immediately detect and
take measures for an attack against the MANET.

There are basically two approaches to protect the MANET: proactive and
reactive. In the proactive approach, a malicious node is detected and excluded
from the network so as to determine a routing route with only friendly and co-
operative nodes. In the reactive approach, when an attacker compromises the
MANET although the route is determined as described above, a malicious node
is detected and excluded from the network [1]. This paper will study the reac-
tive approach. The conventional studies of the MANET have been focused on
detection of a node that maliciously drops or modifies data. That is, they do not
provide a method of identifying a malicious node that makes a false report of a
normal node. In contrast, this paper proposes an scheme that not only identifies
a malicious node, which drops or modifies packets, using a report table storing
previous report lists, but also detect a malicious node that makes a false report
of a normal node, thus degrading the performance of a network.

The construction of this paper will briefly be described. Section 2 describes
related works regarding identification of a malicious node. Section 3 proposes a
method of detecting a malicious node that reports wrong information. Section
4 proves the good performance of the introduced scheme through a simulation
using the NS-2 simulator. Section 5 provides the conclusion of this paper.

2 Related Work

2.1 Attacks Against Routing

Attacks against routing include all actions that prevent routing information from
being transmitted according to a routing scheme for the MANET. To protect
the routing scheme from attacks, the Ariadne for DSR scheme [2] suggests au-
thentication of a routing message exchanged between nodes using a one-way
HMAC key chain, thereby preventing a change in a source route during DSR.
The SAODV scheme [4] suggests a routing message be divided into two parts:
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a part to be changed and the other part to be unchanged during transmission
of the routing message. Then, the hop count of the changed part is processed
using a hash chain and the hop count of the other part is processed using digi-
tal signature, thereby protecting the routing information. The SEAD scheme [5]
proposes hop count and a sequence number be made using a hash chain. In ad-
dition, much research efforts have been conducted to protect the routing scheme
from attacks, but this paper will discuss packet forwarding attacks and security
therefor, not routing attacks.

2.2 Attacks Against Packet Forwarding

Attacks against packet forwarding indicate actions of a node that normally op-
erates during determination of route but does not transmit data packets to a
next node. The node may be a selfish node that does not transmit data to a next
node and transmits only its data to save its resources, or a malicious node that
has an intention to degrade the performance of network. In any case, both the
selfish and malicious nodes must be detected and controlled to guarantee the
performance of network. Throughout this paper, both the selfish and malicious
nodes will be referred to as a malicious node. Attacks against packet forward-
ing include dropping or arbitrarily modifying a data packet to be transmitted,
repeatedly forwarding an already transmitted data packet, and transmitting a
large amount of insignificant packets within a network to consume network re-
sources, thereby increasing contention for or congestion in a wireless channel.
There are various approaches to prevent the above attacks, e.g., the Watchdog
and Pathrater scheme [3], Byzantine Fault Detection [6], and management of
a selfish node [7]. A detailed description thereof will now be described. The
Watchdog and Pathrater scheme is advantageous in that it is possible to detect
a malicious node in the route at a packet transfer level, not a link level. In the
Byzantine Fault Detection, when the destination node receives data, it transmits
an ACK to the source node. If the source node does not receive the ACK within
a predetermined length of time, it determines that data loss occurs in the route.
In the management of a selfish node scheme, each node transmits data to a next
node and stores a copy of the data in its buffer. Upon receipt of a certificate
from the next node, the node confirms that the data was properly transmitted
to the next node.

2.3 Problems

However, the above approaches have a defect since it is impossible to determine
whether a malicious node in the route makes a false report about a normal node
to the source node S.

In the Watchdog and Pathrater scheme [3], the node C normally receives a
data packet from the malicious node B and transmits it to the destination node
D, and the malicious node B overhears the transmission of the data packet.
However, the malicious node B reports to source node S that the node C does
not transmit the data packet to the destination node D. If the destination node
D sends an ACK to the source node S, the source node S will realize that the
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node B makes a false report. However, when the malicious node B drops the
ACK, the source node S will wrongly determine that the node C is a malicious
node, based on the report of the node B.

In the Byzantine Fault Detection [6], the malicious node 3 drops the received
data, normally processes a probe message received from the source node S, sends
an ACK to the source node S. In this case, the source node S receives the ACK
from the node 3 and do not receive an ACK from the node 4. Therefore, the
source node S will wrongly determine that the node 4 is a malicious node.

When detecting a malicious node using a certificate, the malicious node B
transmits data to the node C, receives a certificate from the node C, and makes
a false report to the source node S together with a certificate issued by the node
C although the node C transmits the data to the destination node D. In addition,
the node B drops an ACK from the destination node D via the node C.

Accordingly, the source node S wrongly determines that the node C is a
malicious node without suspecting the node B. That is, the above approaches
cannot provide a solution to an attack of falsely reporting a normal node.

3 Proposed Scheme

3.1 Assumptions

It is assumed that nodes are connected via a bi-directional link, and each node
operates in a promiscuous mode and thus can overhear transmission of data of a
neighbor node. Also, it is assumed that asymmetric encrypting is used to prevent
a node’s false report, a private key K−

i of a node i over a network is not known
to any node except the node i, and a public key K+

i of the node i is known to
all nodes over the network. Thus, in order to reports a node k as a malicious
node, the node i must encrypt a report message using the private key K−

i and
broadcast the report message in the network (reporter: node i, and suspect: node
k). All the nodes receiving the report message can read the report message by
decoding it using the public key K+

i . Since the private key K−
i is not known,

the other node cannot make a false report message.

3.2 Proposed Scheme

The proposed scheme is fairly similar to the Watchdog and Pathrater scheme.
Specifically, each node over a network transmits data to a next node, stores a
copy of the data in its buffer, and overhears transmission of the data of the next
node to confirm whether the next node transmits the data to its neighbor node.

Referring to Fig. 1, a node B transmits data to a node C, stores a copy of
the data in its buffer, and overhears transmission of the data of the node C to
determine whether the node C transmits the data to a destination node D. If
the node B does not overhear the transmission of data of the node C within a
predetermined length of time, the node B increases a failure tally for the node C.
When the tally is greater than a threshold, the node B determines that the node
C made a misbehavior. However, a malicious node’s misbehavior is reported to
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Fig. 1. Proposed Algorithm

a source node S via unicast in the Watchdog and Pathrater scheme, but the
misbehavior is reported to all nodes over the network in the proposed scheme,
thereby immediately detecting and removing a malicious node. Each of the nodes
receiving the report determines whether a reporter and a suspect node listed in
the report are recorded in its report table. If the reporter and the suspect are
listed in the report table, the node disregards and drops the report. If not so, the
node enters the reporter and the suspect node in the report table. In response
to the report, the source node S sets up a new route while excluding a route in
which the reporter and the suspect node are included as neighbor nodes. When
the number of times that a node reports to the source node S is greater than
k equivalent to the number of malicious nodes over the network, the node is
determined as a malicious node and excluded from the network.

Fig. 2 is a flowchart of the proposed scheme that identifies a malicious node,
reports the malicious node to a source node using a report message, and manages
a report table based on the report message. We represent several scenarios to
prove the good performance of the proposed scheme in a network and explain
a method of detecting and excluding a malicious node. The scenarios include
cases where a malicious node drops or modifies data, a malicious node submits a
false report regarding a normal node, and a certain node submits a false report
regarding a normal node.

Case 1: A malicious node drops data.
Referring to Fig. 3, when a malicious node C does not transmit data to a
destination node D and drops the data, a preceding node B cannot overhear
transmission of data of the node C within a predetermined length of time
and thus determines that the node C does not transmit data and drops it.
Thus, the node B reports the node C as a malicious node.

Case 2: A malicious node modifies data.
Referring to Fig. 4, a malicious node C arbitrarily modifies the content of or
a part (or the entire part) of a header of data received from a node B, and
transmits the modified data to a node D. Then, the node B overhears the
transmission of the data of the node C and compares the transmitted data
with a copy of the data stored in a buffer of the node B. When the comparison
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reveals that the data was arbitrarily changed, the node B considers the node
C as a malicious node and reports the node C to a source node S. In case 1
or 2, when the node B submits a report regarding the node C, a report list
of (a) of Fig 5 is recorded in the report tables of all nodes over the network.
When the source node S receives the report and does not receive an ACK
from the destination node D, the source node S determines that a malicious
node is in the current route and sets up a new route. If the malicious node
C is included in the new route or another route from the source node S to
the destination node D, the malicious node C will drop or arbitrarily modify
data, and thus, other nodes L and K will report the node C as a malicious
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node to the source node S [see (b) and (c) of Fig 5]. In other words, when
a malicious node operates normally during determination of a route, it can
be included in the determined route. However, when the malicious node
does not properly transmit data to a neighbor node, other nodes report the
malicious node so that the malicious node is recorded as a suspect node in
the report table.

If two malicious nodes are on the network, it is possible to consider the
node C as a malicious node and exclude it from further network operations
when the node C is recorded as a suspect node at least three times. This is
because the number of times that the two malicious nodes can submit a false
report regarding a normal node while cooperating with each other is two.
Accordingly, when the node C is reported as a malicious node at least three
times, this report can be considered as a true report, not a false report.

Case 3: A malicious node disguises itself as another node and submits a false
report. Since the proposed scheme uses asymmetric encryption using a pri-
vate key and a public key, it is possible to prevent a malicious node from
disguising itself as a normal node using the identification of the normal node,
and submitting a false report. Referring to Fig 6, even if a node B can dis-
guise itself as a node X and submit a false report message R, the node B
does not know a private key K−

X of the node X, and must encrypt the false
report message R using its private key K−

B and broadcast the false report
message R.
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Fig. 6. When Malicious node disguises as another node

Upon receiving the false report message R, each node considers that the
node X transmits the false report message R and decodes it using the public
key K+

X of the node X. However, since the false report message R was not
encrypted using the private key KX , the false report message R cannot be
decoded properly, thus causing an error. Therefore, each node can realize
that the false report message R is a false report. For this reason, the node
B cannot disguise itself as another node and submit a false report.

Case 4: A malicious node submits a false report regarding another node.
When a malicious node M submits a false report regarding a node X irre-
spective of route setup or data transmission, a list of a reporter and a suspect
node is entered in a report table of each node, indicated by 1 of Fig 7. If the
malicious node M continues submitting a false report at a current or new
position, a report list is added to the report table of each node, indicated
by 1 and 3 of Fig 7. When the malicious node M is recorded as a reporter
in the report table of each node more than k times, the node M is identified
as a false reporter, and thus cannot participate in network operations.

Case 5: A malicious node submits a false report regarding a normal node.
As shown in Fig 8, when a malicious node B submits a false report regarding
a normal node C and drops an ACK transmitted from the node D, a source
node S sets up a new route without determining whether the report of the
node B is false. Instead, a list of (a) of Fig 8 is added to a report table of
each node. When the node B makes a false report at a new or different route
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again, lists of (b) and (c) of Fig 8 are added to the report table of each
node. Referring to (a) through (c), only the malicious node B is listed as a
reporter but nodes listed as suspect nodes are different from one another,
which proves that the node B made false reports. When two malicious nodes
are over the network and the node B is recorded as a reporter in the report
table three or more times, the node B is considered as a malicious node that
submitted false reports. If the node B is a good node and nodes C and H
are malicious nodes, the lists (a) and (b) may be created according to true
reports, not false reports. Therefore, when the number of reports is larger by
at least one than the number of malicious nodes, a suspect node is considered
as a malicious node.

3.3 Application of Proposed Scheme to AODV

This chapter will discuss a method of applying the proposed scheme to the DSR
protocol and the AODV routing protocol that are two representative on-demand
routing protocols for the Ad Hoc Network. It is easy to exclude a node, which
is identified as a malicious node, during determination of a route. Referring to
(a) of Fig 9, when a node A broadcasts a RREQ message, a malicious node
B receives and rebroadcasts the RREQ message. Normal nodes E, C, and F
receive the RREQ message from the malicious node B, realize that the node B
is malicious node from their report tables, and do not allow transmission of the
RREQ message to other nodes in the network, thereby excluding the node B
from the route.
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There is a case where a pair of a reporter and a suspect is reported once or
more in the network but it is difficult to identify a malicious node. Referring
to (a) of Fig 9, the nodes B and C are recorded as a reporter and a suspect,
respectively, in the report table of each node over the network. If the reporter
node B is a malicious node that maliciously submits a false report, the node B
broadcasts the RREQ message and the nodes E, C, and D receive the RREQ
message. The normal node C drops the RREQ message, since it does not desire
to reflect the RREQ message, which describes that the node B is the reporter
and the node C is the suspect, in determining a new route. However, the nodes
E and F rebroadcast the RREQ message from the node B so that a new route
is determined to reflect to determine the route according to the RREQ message.
Referring to (b) of Fig 9, since a node C is a malicious node, the node C does
not drop the RREQ message that the node B broadcast, and rebroadcasts it so
that both the nodes B and C can be included in a new route. This is because the
node C predicts even if the malicious node C is included in the new route again
and drops data from the node B and the node B reports this fact, the report of
the node B would be disregarded in the network. In this case, the AODV routing
requires an additional scheme to exclude a malicious node. Specifically, according
to the additional scheme, a previous node address field previous add is added to
the RREQ message, thus allowing a node receiving the RREQ message to notice
a node transmitting the RREQ message and a previous node preceding the node
that transmits the RREQ message. Referring to (b) of Fig 9, the malicious node
C receives the RREQ message from the node B and transmits the RREQ message
to the node D. Then, the node D notices that the previous node (previous-hop)
of the node C is the node B based on the RREQ message and a report table
of the node D, and do not transmit the RREQ message to exclude the nodes B
and C from the route.

3.4 Application of Proposed Scheme to DSR

The DSR is a type of source routing. In the DSR, each of intermediate nodes in a
route can detect all previous nodes of a node that transmits an RREQ message to
the intermediate node. If a malicious node or a pair of a reporter and a suspect,
which are listed in a report table of the intermediate node, are specified in the
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RREQ message, the intermediate node does not transmit the RREQ message to
a neighbor node and drops it to exclude the malicious node or the pair of the
reporter and the suspect from a new route. In the DSR, a method of excluding
a node that is identified as a malicious node from a network is similar to in
the AODV routing. Referring to (a) of Fig 9, a malicious node B broadcasts an
RREQ message, and nodes C, E, and F receive the RREQ message. However,
the nodes C, E, and F notice that the node B is a malicious node from their
report tables, and do not transmit the RREQ message to exclude the node B
from the network. Next, it is assumed that whether a reporter node or a suspect
node is a malicious node has not yet been identified. In this case, similarly in
the AODV routing, when a reporter node B is a malicious node, nodes C, E,
and F receive a RREQ message from the node B. However, the node C does not
broadcast the RREQ message and drop it since it does not desire to reflect the
RREQ message that describes the nodes B and C as a reporter and a suspect,
respectively, in determining a new route [see (a) of Fig 9]. Instead, the nodes E
and F broadcast the RREQ message from the node B so that a new route can
be determined based on the RREQ message. If the suspect node C is a malicious
node, the AODV routing requires an scheme that adds a previous node address
field previous add into the RREQ message to exclude the node C from a new
network. In contrast, the DSR does not require the scheme. This is because the
node D receives the RREQ message broadcast again by the node C, reads source
routing information from the RREQ message, and does not transmit the RREQ
message to prevent the nodes B and C from being included in a new route [see
(b) of Fig 9].

4 Analysis and Performance

This section proves the good performance of the proposed scheme through a
simulation. The simulation was performed using the NS-2 simulator. In the sim-
ulation, the proposed scheme was applied to the existing AODV routing protocol
since it is easy to apply the proposed scheme to the DSR protocol as described
above. Also, in the simulation, the existing AODV routing protocol and the
AODV routing protocol that uses the proposed scheme (hereinafter, ”the pro-
posed AODV routing) are compared with each other in terms of their average
loss rates, average transmission rates, and overheads, on an assumption that a
malicious node is over a network. Table 1shows major parameter values used in
the simulation.

4.1 Average Loss Rate

(a) of Fig 10 is a graph illustrating average loss rates in the existing AODV
routing protocol and the proposed AODV routing protocol when the number of
malicious nodes is six and pause times are 0 and 600 sec. The graph reveals that
the loss rate in the proposed AODV routing protocol is 10 through 20% less than
that in the existing AODV protocol. Also, the longer the length of time of the
simulation, the less the loss rate in the proposed AODV routing protocol. That
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Table 1. Major parameters

Network size 1000 * 1000 (m)

Number of nodes 60

Number of malicious nodes 3, 6

Simulation time 1000 sec

Pause time 0, 600 sec

Traffic UDP/CBR
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Fig. 10. Average Loss Rates

is, as a predetermined time has passed, the proposed scheme identifies malicious
nodes over a network and excludes them from a newly determined route, thereby
preventing attacks by the malicious nodes and reducing the loss rate. Further,
the more the mobility of malicious node, the higher the loss rate. In other words,
it is highly probable that a malicious node would move to be included in a new
route. Referring to (b) of Fig 10, the average loss rate when the number of
malicious nodes is three, is lower than when the number of malicious nodes is
six. That is, the less the number of malicious nodes over the network, the less
the probability that the malicious nodes would be included in the route.

4.2 Average Transmission Rate

Fig 11 is a graph illustrating average transmission rates in the existing AODV
routing protocol and the proposed AODV routing protocol in the above envi-
ronment. Referring to Fig 11, since the loss rate in the proposed AODV routing
protocol is less than that in the existing AODV routing protocol, the transmis-
sion rate in the proposed AODV routing protocol is higher than in the existing
AODV routing protocol. Also, a large amount of data can be transmitted when
three malicious nodes are over the network, in contrast with when six malicious
nodes are over the network. Further, a loss rate is lower and the transmission
rate is higher when pause time is 600 sec, i.e., when the mobility of network is
small, than when pause time is 0, i.e., when the mobility of network is large.
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Fig. 11. Average Transmission Rates

That is, when malicious nodes frequently move, they are highly likely to be in-
cluded in a new route. In this case, the loss rate in the network is increased,
thus lowering the transmission rate. The longer the length of time of the simula-
tion, the greater the difference in transmission rates between the existing AODV
routing protocol and the proposed AODV routing protocol. This is because ma-
licious nodes over the network are detected and excluded from the network as a
predetermined length of time has passed.

4.3 Overhead

Fig 12 is a graph illustrating the transmission gains and overheads in the ex-
isting AODV routing protocol and the proposed AODV routing protocol, the
transmission gains and overheads being represented in units of bytes. The over-
head is a value obtained by subtracting the amount of control packets in the
existing AODV routing protocol from that of control packets in the proposed
AODV routing protocol. The transmission gain is obtained by subtracting the
transmission rate in the existing AODV routing protocol from that in the pro-
posed AODV routing protocol, the result of subtraction being represented in
units of bytes. When comparing their overheads in units of packets of a network
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layer, the proposed AODV routing protocol generates more control messages
than the existing AODV routing protocol. This is due to broadcasting of a re-
port message in the network when a malicious node is identified in the proposed
AODV routing protocol. In general, a control packet is several byte long and
a data packet is several hundred byte long. Accordingly, use of the proposed
AODV routing protocol obtains more transmission gains with less overhead in
considering overall network transmission rates in units of bytes, as illustrated in
Fig 12.

5 Conclusions

This paper proposes an scheme that detects and excludes a malicious node that
normally operates during determination of a route but abnormally operates dur-
ing data transmission over the network, using a report message and a report
table specifying a pair of a reporter node and a suspect node. In the scheme,
a suspect node is determined as a malicious node when k malicious nodes are
over the MANET and more than k report lists are recorded in the report table.
Accordingly, it is possible to effectively determine whether a node is a malicious
node submitting a false report and exclude the node from the network. The pro-
posed scheme is applicable to both the DSR protocol and the AODV routing
protocol that are representative on-demand routing protocols for the Ad Hoc
Network. Also, this paper proves through a simulation that the AODV rout-
ing protocol that uses the proposed scheme is superior to the existing AODV
routing protocol in view of their average loss rates and transmission rates. The
simulation revealed that the more malicious nodes over the network, the more
the mobility of the malicious node, the greater the rate of data loss, and the
less the rate of transmission. In particular, as time has passed, the performance
of the AODV routing protocol using the proposed scheme becomes still better
than the existing AODV routing protocol. This is because the proposed scheme
detects malicious nodes over the network and excludes them from the network,
thereby reducing the loss of packet, caused by the malicious node. However, the
proposed scheme must further be improved to provide more extensive security
during determination of a route over the Ad hoc network.
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Abstract. With mobile RFID technology, handheld portable devices
like mobile phones and PDAs, also behave as RFID readers and RFID
tags. As RFID readers, mobile phones provide an user-friendly approach
to quickly and efficiently scan, access and view information about RFID
tagged items. As RFID tags, mobile phones can quickly identify them-
selves in order to communicate with other tagged devices, which provide
essential services. At the outset this paper briefly describes Mobile RFID
technology and compare it with conventional RFID technology. We pio-
neer in categorizing Mobile RFID applications into three distinct zones,
namely: Location-based Services (LBS) Zone, Enterprise Zone, and Pri-
vate Zone. We describe application scenarios related to these zones and
highlight various security and privacy threats. Finally, we propose a se-
curity architecture for LBS zone and describe our future work.

1 Introduction

1.1 RFID Technology

Radio Frequency Identification (RFID) [1] is a means to efficiently and quickly,
auto-identify objects, assets, pets, and people. So far, few big companies like Wal-
Mart, Proctor & Gamble Co., and Gillette etc., are using RFID technology for
real-time tracking of inventory in their supply chain. With the current bar-code
technology, each product’s bar-code label must be brought before the reader,
and labels must be scanned one by one. This leads to laborious, human-error
prone, and time consuming inventory check, and also causes customers in a store
to wait in long queues at the cashier counter.

Whereas with RFID technology, passive RFID tags are attached to objects/
products and these tags contain tiny, but durable computer chips with very small
antennas. Passive tags are powered-up from the interrogation Radio-Frequency
(RF) signal of a reader. The tiny computer chips contain an Electronic Product
Code (EPC) that uniquely identifies the object to which it is attached to, and
the antennas automatically transmit this EPC number without requiring line-
of-sight scanning, to RFID readers within a certain RF range. The unique EPC
number is like a pointer directing the RFID reader to the right Information
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Server on the EPC Network from where the reader can download additional
related data about the product it scanned. Therefore RIFD technology allows
quick scanning of products in large bulks (e.g., a whole pallet at a time) thus
speeding up the supply chain management

Other advantages of RFID technology include: RFID tags can stand a harsh
environment, long read ranges, portable database, multiple tag read/write, and
tracking items in real-time, etc. [5] gives a good description about RFID technol-
ogy for supply chain management. RFID automates supply chain management,
enabling enterprises to realize significant savings to the top and bottom line.
RFID technology greatly helps enterprises to maintain the accuracy of ship-
ments sent and received by parties throughout distribution. As a result we can
keep a check on product theft, product counterfeiting, and it also helps in precise
product recall.

1.2 Mobile RFID Technology

Currently RFID tags are still expensive, but very soon it would become econom-
ical to tag products at the item level. This will open the door for large-scale use
of RFID tags on consumer goods. As a result, in near future we can realize, one
of the visions of automatic identification and ubiquitous computing, which is the
creation of an “Internet of Objects”. In such a highly connected network; de-
vices, objects, items of any kind dispersed through an enterprise or in our society
can talk to each other, providing real-time information about the objects, loca-
tion, contents, destination, and ambient conditions. This communication allows
much-sought-after, efficient and easy machine-to-machine identification, commu-
nication, and decision-making [1]. Thus RFID technology will have a tremendous
impact on our society, once it starts to assist people in their daily lives. A right
step in this direction is Mobile RFID technology.

With mobile RFID technology, handheld portable devices like mobile phones
and PDAs, apart from having the usual voice/data communicating features,
also behave as RFID readers and RFID tags. As a result, Mobile RFID brings
the conventional RFID technology closer to common users rather than just con-
straining it’s usage to supply chain management. The following section describes
the various applications of Mobile RFID technology.

1.3 Applications of Mobile RFID Technology

With Mobile RFID technology users can efficiently perform two major tasks,
namely: download and view information represented by RFID tags, and machine-
to-machine identification and communication.

Download & View Information represented by RFID tags: Just by
bringing a Mobile RFID enabled portable device near to a RFID tagged object,
we can quickly and easily download information represented by that RFID tag
and view that information via mobile device’s display screen. For example:
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– We can download information about a particular location by scanning RFID
tagged sign posts, and landmarks.

– We can download bus routes by scanning RFID tagged Buses.
– We can download prices of RFID tagged merchandise sold at stores, and

published in catalogs for Smart Shopping.
– We can download movies, music, trailers, show timings, and theater locations

by scanning RFID tagged movie posters, music CDs, etc.

Machine-to-Machine identification and communication: When Mobile
RFID enabled portable device behaves as a RFID tag we can consider the fol-
lowing applications:

– We can authenticate ourselves to a RFID reader in order to access a partic-
ular facility (building, home, etc.) or services.

– We can carryout micro payments at subway stations, bus, newspaper stands,
and gas stations by bringing our mobile device near to a RFID reader.

– We can give out information about our mobile device’s model no. and size
of it’s display screen, in-order to download and view suitable multimedia
content from a multimedia kiosk.

– We can make a quick call or send an instant message by scanning RFID
tagged photographs, business cards, address books, etc.

We strongly believe that Mobile RFID technology has a great future and
it’s a very challenging research area. It is poised to be one of the future killer
applications and services for mobile communications field.

1.4 Mobile RFID Application Zones

Mobile RFID applications can be broadly categorized into three zones namely:
Location-based Services (LBS) Zone, Enterprise Zone, and Private Zone. From
now on and Henceforth we consider a “mobile phone” to be our portable device,
which has Mobile RFID enabled technology, i.e., this mobile phone is incorpo-
rated with both RFID reader and tag functionalities. In the subsequent sections
we describe each of these zones and their corresponding security and privacy
threats.

2 Location-Based Services (LBS) Zone

In a LBS zone, service providers provide services that are “related to” and “avail-
able at” customer’s current location. The coverage of this zone is very large,
which includes all public places, roads, shopping malls, cinema halls, and food
courts, etc. Service providers deploy RFID tagged items/devices (e.g., posters,
sign boards, maps, shopping catalogs, commodities, digital photo printers, mul-
timedia servers, and RFID readers to receive payments, etc.) all around, which
will enable us to carry out the above-mentioned two major tasks.
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2.1 Security for Mobile RFID at LBS Zone

In this section we describe various security threats related to Mobile RFID at
LBS Zone and later propose a security framework. Table 1, summarizes the
security assessment of this zone.

In LBS zone, most of the RFID tags respond to every mobile phone, otherwise
the main purpose of these tags to provide “location-based instant information”
would be defeated. Therefore, we do not consider a tag-reader mutual authenti-
cation and strong secure communication between RFID tag and mobile phone.
But there is one problem, these publicly available tags can be fake or must have
been illegally modified (cloned) and no longer truly represent the information
of the item in question. As a result, we at least need a one-way authentication
mechanism, which authenticates the RFID tag to the mobile phone. [2] provides
description of some of the RFID tag-reader authentication schemes that bet-
ter serve this purpose. The most popular among them are challenge-response
schemes that are based on symmetric key encryptions, hash functions, and hash
chains.

Also we assume that for this task in LBS zone, most of the items/products
are tagged with low-cost passive RFID tags like EPCglobal Class-1 Generation-2
UHF tags [4]. Generally a user’s mobile phone may be used to scan one RFID tag
at a time, we assume that the distance between the RFID tag and the mobile
phone is too short to consider an active eavesdropping by an adversary. For
further security assessment, let us consider the following scenario:

Scenario: Alice visits a shopping mall. She uses her mobile phone to scan RFID
tags attached to various items that are being sold. After scanning a particular
RFID tag, the mobile phone is allowed to access shopping mall’s “Information
Server (IS)”, which contains a detailed database about the scanned RFID tag.
As a result, the mobile phone can download and store the price, picture, features,
and manufacturer details of that item. The mobile phone must not be allowed to
download other sensitive details like the number of pieces sold so far, its profit
margin, and stock availability, etc., in order to prevent corporate espionage, this
information is strictly for the shopping mall’s inventory checking staff. Alice’s
mobile phone must also be protected from being directed to, accessing, download-
ing information, from malicious IS. Malicious IS can either induce virus code
into to the mobile phone or extract sensitive data off the mobile phone. Alice
must be able to scan tags in the shopping mall anonymously without revealing
her true identity and buying habits. The shopping mall must be able to verify Al-
ice’s age incase she wants to download details about alcohol, and mature books or
multi-media content. On the other hand, Charlie, an adversary, stalks Alice into
an elevator. Charlie must be prevented from using his mobile phone to scan and
retrieve sensitive information off any RFID tagged item that Alice is carrying in
her bag/purse.

From the above scenario, we identified the following security threats and security
requirements:
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Secure Job Delegation & Trust Model: There would be many competitive
service providers selling location-based services to users. A user’s mobile phone
may need to communicate with many service provider’s Information Server. Mo-
bile phone should identify and authenticate genuine information servers and be
able to secure the entire transaction and also protect the owner’s privacy. But
these tasks could create a huge burden on the low-computing and resource-poor
mobile phone and is certainly not user friendly. Therefore it would be lot easier
for the mobile phone to securely delegate its work to a trusted high-computing
and resource-rich entity, such as a mobile operator. This approach helps in re-
ducing the communication and computational burden on the mobile phone. Es-
tablishing an efficient and a convincing trust model is very much required to
ensure secure transactions, key distribution, and job delegation. With existence
of a trust model, it would be lot easier for the mobile phone to delegate its work
to the mobile operator.

Detect Malicious Tag Information Servers: User’s mobile phone must be
allowed to access and download information from only genuine and authentic
tag information servers. Therefore it is essential to authenticate and authorize
every information server that the mobile phone is trying to access.

Authorized Tag Information Access: Some of the information represented
by RFID tags must be available to only authorized people. But with the onset of
Mobile RFID technology, RFID readers (incorporated into mobile phones) will
soon become ubiquitous. Therefore it becomes essential for information servers to
categorize which user’s mobile phone is entitled to download what kind of infor-
mation. This requires efficient authentication, authorization, and access-control
protocol. Information represented by RFID tags must be made available to mo-
bile phones, based on the privileges of the user e.g., customer, staff, juvenile,
adult, gold/platinum member of an organization, etc.

User Privacy Protection: After scanning a particular RFID tag for infor-
mation, the identity and location of user must not be revealed to the service
provider. This personal information could allow service providers and vendors
to generate detailed profiles of the user, his buying interests, and transactions
information. Adversaries must not be able to scan RFID tagged items already
purchased by users.

Data Integrity & Confidentiality: We require secure Electronic Data In-
terchange (EDI) between the mobile phone and service provider’s Information
Servers.

Table 1 gives the summary of security threats and security requirements for
this zone. We consider two distinct communication channels between: Mobile
Phone & RFID Tag (for scanning a tag), and Mobile Phone & Service Provider’s
Information Server (for retrieving information represented by the tag).
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Table 1. Mobile RFID-LBS Zone Security Assessment

Threat Security Req. Tag ↔ MP MP ↔ SP-IS

User ID Privacy Pseudonyms O O
Anonymous Credential O O

Illegal Info. Access Authentication O O
Authorization X O
Access Control List X O

Eavesdropping Encryption/Decryption X O
Digital Certificate X O

Key/Pwd Trust Model X O
Compromise Key/Pwd Management X O

MP: Mobile Phone SP-IS: X: Not Req. O: Req.
Service Provider’s IS

3 Building Blocks: Mobile RFID - LBS Zone

The building blocks of Mobile RFID infrastructure in LBS zone is similar to
EPCglobal’s RFID infrastructure. EPCglobal [6] is leading the development of
industry-driven standards for the Electronic Product Code (EPC) to support the
use of Radio Frequency Identification (RFID) in supply chain management. Due
to space constraint we do not explain the EPCglobal RFID System Architecture.
But the details we provide can be understood easily. Expect that we introduced
mobile operator and eliminated the need of EPC Middleware. Since mobile RFID
would mostly scan one tagged item at a time, there is no need for filtering
software to make the mobile RFID data clear.

– Mobile RFID (M-RFID): Mobile Phone with both RFID Reader and Tag
functionalities, is used to scan tagged items available everywhere.

– RFID Tags: every RFID tag contains its unique EPC number. EPC is a
globally unique serial number that identifies an item in the supply chain.
EPC data/number contains: EPC Manager number (identifies the company),
Object class (similar to a stock-keeping unit, also called product number),
Serial number (specific instance of the object class being tagged, objects own
unique identifier). EPCglobal allocates manufacturers specific blocks of EPC
numbers, and manufacturers then add their own product codes and serial
numbers to their assigned manufacturer numbers to create unique identifiers
- EPCs.
Further information about the product is stored on a network of servers
and databases called EPC Network. Therefore, unique EPC number acts
like a pointer directing the RFID reader to the right entity on the EPC
Network from where the reader can download additional related data about
the product it scanned.

– Mobile Operator (MO): In the current mobile communications paradigm
we have already put in a great deal of trust in MO, as it handles all our
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voice and data communications. It maintains a record of each subscriber’s
call details, contact information, and credit card details, etc. It even has
the capability to easily determine our current location and tap into our
communications. But what protects us from MO turning hostile is that it
has to very strictly adhere to and follow legal, security and privacy policies
imposed by the law. Our architecture extends this trust in MO to secure and
provide privacy protection for Mobile RFID transactions. This approach is
very practical and easily deployable, as the current mobile communications
infrastructure is widely spread and highly stable. MO takes responsibility
on behalf of M-RFID to select, identify, and authenticate genuine ECP-IS.
MO behaving like a “Trusted Proxy” processes the request on behalf of the
M-RFID, greatly reducing the communication and computational burden on
the user’s mobile phone and also provides users privacy protection. MO also
takes responsibility on behalf of M-RFID to select, identify, and authenticate
only the genuine SPs and their information servers.

– EPC Network: Just like the global look-up system such as the Domain Name
Service (DNS), VeriSign [5], after obtaining the contract from EPCglobal, has
invested heavily in building and marketing an EPC Network specifically to
look up EPC data. It becomes very necessary to look up each EPC number
on a central data repository like we do with a Web page or other system
using DNS. Keeping EPC data as an unique reference or primary ID, further
information about the respective product is stored on databases and servers
of EPC Network. This network assists local company staff and geographically
distributed supply chain partners to easily and efficiently access information
on any product they are handling from any location. The EPC Network [5]
consists of three main components: Object Naming Service (ONS), the EPC-
Information Services (EPC-IS), and the EPC-Discovery Services (EPC-DS).

4 Security Architecture: Mobile RFID - LBS Zone

This section describes our proposed security architecture of the Mobile RFID as
depicted in Figure 1.

– Step 1: M-RFID scans a RFID tag
– Step 2: RFID tag responds with EPC number
– Step 3: M-RFID authenticates itself to MO via login ID/pwd and sends the

EPC number to MO
– Step 4: MO sends EPC number to the ONS
– Step 5: ONS responds with URL of the EPC-IS related to the EPC number

in question
– Step 6: MO fetches the anonymous M-RFID certificate from its database and

sends it along with EPC number to the URL of EPC-IS. The certificate does
not contain the identity of M-RFID but contains some related information
like age, proof of privileged membership, etc.

– Step 7: EPC-IS verifies the certificate and checks the access-control list in
its database.
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– Step 8: Depending on the access rights of that certificate, EPC-IS responds
to MO with related data about the EPC number in question.

– Step 9: MO sends the EPC information to the M-RFID. This communica-
tions can be encrypted using an established session-key

– Step 10: MO stores details of this transaction in the database of this M-
RFID. Later, M-RFID can query some information about the tags it accessed
previously on a particular date, time, location (for compare shopping) and
also items it purchased.

– Step 11: M-RFID can purchase tagged items. MO can pay the vendor on
behalf of M-RFID and later get the money from M-RFID via monthly tele-
phone bills.

Fig. 1. Mobile RFID - LBS Zone Security Architecture

4.1 Security Solutions

Mutual Authentication mechanism between M-RFID and MO. A sim-
ple ID/Password authentication for M-RFID and MO’s PKI certificate verifica-
tion by M-RIFD is necessary for mutual authentication between M-RFID and
MO. This provides secure job delegation, trust model, data integrity and confi-
dentiality between M-RFID and MO.

Mutual Authentication mechanism between MO and EPC-IS. MO
takes responsibility on behalf of M-RFID to select, identify, and authenticate
only the genuine SPs and their information servers. This protects M-RFID from
accessing malicious EPC-IS servers. Since MO and EPC-IS are resource rich en-
tities, they both can authenticate each other via PKI-based certificates. Thus
providing data integrity and confidentiality.
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Anonymous Certificates for Identity management, authentication, and
authorization. M-RFID can request anonymous certificate from MO. This
certificate does not contain the true identity of M-RFID but contains other
details like age, whether the user is a gold card member or not, staff or visitor,
etc. This protects the privacy of the owner of M-RFID and also assists EPC-IS
to provide corresponding information about the EPC number in question.

M-RFID privacy. Our approach protects both location and information pri-
vacy of M-RFID. With the use of anonymous certificate the vendor or the service
providor of the tagged item can never know the true identity of the M-RFID’s
owner. To prevent an adversary from scanning the handbag of Alice, and obtain
information about the tagged items purchased by her, we suggest the following
two approaches:

Kill the Tag: EPCglobal Class 1 Gen 2 UHF Tags [4] can be embedded with
Kill Password. Whenever a RFID reader send this Kill Password to the
tag, the tag is killed and rendered permanently unusable and unreadable.
Therefore, once a tagged item is purchased by M-RFID, the trustable clerk
at the point of sale (cash counter) can obtain the tag’s kill password from the
shopping mall’s information server and using this kill password the clerk can
kill the tag permanently. But this approach has a drawback if the customer
wants to make use of the tag capabilities at his home, e.g., RFID enabled
refrigerator or book shelf, etc.

Lock the Tag: EPCglobal Class 1 Gen 2 UHF Tags [4] can be embedded with
a 32-bit value Access Password, which means that only a reader that already
possesses the right access password can perform mandatory commands on
the tag, such as Read, Write, and Lock. Therefore tag’s access password
can be used for ”reader to tag” authentication and in the process allows
the reader to access the locked memory banks within the tag, permission to
change the lock status of the memory banks, and write data into the tag,
etc. A tag has four memory banks: Reserved, EPC, TID, and User. Reserved
memory bank is used to store the Kill Password and Access Password, EPC
memory bank for EPC number, TID memory bank for tag’s unique manu-
facturer identity number, and User memory bank for additional user data.
The reserved memory bank of the tag is permanently locked; as a result the
access password can neither be read nor modified by any reader.

Therefore once a tagged item is purchased by M-RFID, the trustable clerk
at the point-of-sale (cash counter) can obtain the tag’s access password from
the shopping mall’s information server and using this access password the
clerk can lock all the memory banks of the tag including the EPC memory
bank. The M-RFID can obtain and store the tag’s access password at the
point-of-sale. Now the customer can use his/her M-RFID to lock and unlock
the tag whenever and wherever required. Since an adversary does not know
the tag’s access password he can no longer track or get any data from the
tag as all the memory banks are locked. Through this approach the tag need
not be killed permanently.
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5 Enterprise Zone

In this zone mobile phone assists company’s mobile staff/employees like inven-
tory checkers, field engineers, maintenance and repair staff, and security guards.
It helps them in real-time inventory management, work attendance log, instruc-
tions on how to operate tagged items, ‘identification of’ and ‘access control to’
tagged equipment and secure enclosures, and proof of staff presence at certain
locations in a building that needs to be monitored periodically, etc.

The security framework for enterprise zone Mobile RFID applications could
be proprietary and confined to the boundaries of a particular organization. In
such a confined and well-monitored zone it’s not very difficult to establish and
enforce an efficient security architecture, trust model, and security & privacy
policies. With the availability of up-to-date list of registered employees and
items/products in a company; designing and implementing key/ password distri-
bution, data integrity & confidentiality, identification, authentication, and access
control protocols among staff, RFID readers, RFID tagged items, and EPC Net-
work is moderately easy and mostly risk free when compared to LBS zone.

Since this zone needs precise authentication and security auditing in order to
access RFID tagged items, we require tag-reader mutual authentication and also
the true identity of the M-RFID must be revealed, therefore user privacy may
not be needed. Table 2, summarizes the security assessment of this zone.

Table 2. Mobile RFID-Enterprise Zone Security Assessment

Threat Security Req. Tag ↔ MP MP ↔ E-EPC

User ID Privacy Pseudonyms X X
Anonymous Credential X X

Illegal Info. Access Authentication O O
Authorization O O
Access Control List X O

Eavesdropping Encryption/Decryption X O
Digital Certificate X O

Key/Pwd Trust Model X X
Compromise Key/Pwd Management O O

MP: Mobile Phone E-EPC: X: Not Req. O: Req.
Enterprise’s EPC n/w

6 Private Zone

In this zone, mobile phone assists users in their private space like home, gar-
den, garage, car, and workshop. It helps them to make an instant call or send
an instant message by scanning RFID tagged photographs, business cards, and
address books. By scanning RFID tagged household items with a mobile phone,
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we can quickly obtain information like; when would the milk stored in the re-
frigerator expire, details of the books in the bookshelf, when was the last time
a RFID tagged plant has been watered, and when to change the engine oil, etc.

This zone is small when compared to the other two zones and therefore it
requires a simple security model that can be easily deployed and maintained by
the user at his home. Users in this zone can buy off-the-shelf Mobile RFID Kits.
These kits can contain RFID tags, Mobile RFID, related hardware, and software
with user-friendly GUI. The software can assist the users to easily encode EPC
numbers of their choice into the RFID tags, create a portable database in their
PC with details about the tagged household items, create passwords to access
these tags and the database, and finally secure the wireless/WiFi network in the
home environment.

Other option could be, the user can obtain storage space (for free or fee)
on the EPC Network (EPC-Information Servers) and via a password protected
user-friendly website, he can upload his personal EPC numbers and details of the
tagged household items. Whenever he scans his private RFID tag in his home,
the Mobile RFID contacts his personal page on the EPC-Information Server and
downloads the details about the item in question. This approach alleviates user’s
burden of configuring his own security system. The EPC-Information Server
must provide user privacy protection, and secure communication.

We need to protect this zone from malicious RFID readers sitting outside
this zone and trying to track the RFID items inside the zone (e.g., all the ex-
pensive items inside the home that are worthwhile to steal). To ward off this
threat we need reader to tag authentication. The tag must allow only authorized
readers from within the home to scan and query it. Other approach is to install
equipment outside the home, that would jam any external malicious noise or
radio signals from entering inside the home. Sometimes it may be required that
the children, guests and visitors to this zone are provided with different access
control rights to the tagged devices. Therefore we need user identity and access

Table 3. Mobile RFID-Private Zone Security Assessment

Threat Security Req. Tag ↔ MP MP ↔ U-EPC

User ID Privacy Pseudonyms X X
Anonymous Credential X X

Illegal Info. Access Authentication O O
Authorization O O
Access Control List X O

Eavesdropping Encryption/Decryption X O
Digital Certificate X O

Key/Pwd Trust Model O O
Compromise Key/Pwd Management O O

MP: Mobile Phone U-EPC: X: Not Req. O: Req.
User’s Private EPC n/w



Mobile RFID Applications and Security Challenges 205

control list, which specifies the rights and capabilities of the users in this zone.
Table 3, summarizes the security assessment of this zone.

7 Conclusion

This paper provides future vision and security challenges of Mobile RFID. We
mentioned the various security threats and security requirements at different
zones of Mobile RFID applications namely LBS, enterprise, and private zones.
And proposed a simple security architecture for the LBS zone, that fits the
RFID EPC Network. The advantages of this architecture are as follows: simple,
involves less user interactions, secure job delegation between Mobile RFID and
Mobile Operator. Also the Mobile Operator conceals the identity of users, as a
result service providers and vendors of tagged items cannot maintain users de-
tailed profiles and location information, this protects users privacy. It could be
a good revenue generator for the mobile operator and service providers through
commissions for every transaction. Our approach is practical and easily deploy-
able, as the current mobile communications infrastructure is widely spread and
highly stable. And vendors can still use the the popular RFID EPC network. As
our future work we would propose more concrete security architectures for the
other two zones of Mobile RFID applications and also propose a simple, secure
and privacy preserving payment phase for Mobile RFID applications.
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Abstract. The Computer Forensics is a research area that finds the
malicious users by collecting and analyzing the intrusion or infringement
evidence of computer crimes such as hacking. Many researches about
Computer Forensics have been done so far. But those researches have
focused on how to collect the forensic evidence for both analysis and
proofs after receiving the intrusion or infringement reports of hosts from
computer users or network administrators. In this paper, we describe
how to selectively collect the forensic evidence of good quality from ob-
servable and protective hosts at the time of infringement occurrence by
malicious users. By correlating the event logs of Intrusion Detection Sys-
tems(IDSes) and hosts with the configuration information of hosts peri-
odically, we calculate the value of infringement severity that implies the
real infringement possibility of the hosts. Based on this severity value,
we selectively collect the evidence for proofs at the time of infringement
occurrence. As a result, we show that we can minimize the information
damage of the evidence for both analysis and proofs, and reduce the
amount of data which are used to analyze the degree of infringement
severity.

1 Introduction

With the advent of transaction using Internet, the infringement of personal infor-
mation and information leakage with many serious damages has been reported.
However, the evidence for both analysis and proofs can be modified by the ma-
licious or naive behavior so that it becomes not easy to investigate these crimes
effectively when they happen. Therefore, Computer Forensics, or simply called
Forensics, has become an important security area, which considers the collection
of the non-damaged forensic evidence, its analysis, the inference of the behavior,
and the trace-back of the malicious user.

In the traditional Forensics, the gathering, saving and analysis of the evidence
have been done at the time of the infringement occurrence such as system hack-
ing, as shown in Fig.1-(a). That is, based on the time of the infringement report
� This research was supported by the University IT Research Center Project.
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Infringement (analysis) data 
gathering and analysis at the time 
that user or administrator reports.

The time of infringement occurrence
Gathering

col./anal. col./anal. col./anal.

t t

(a) (b)

Log generation time

col./anal.

Fig. 1. Comparison of infringement report time: (a)previous(gathering) (b)proposed
(collection) where, col. means ‘collection’ and anal. means ‘analysis’

from users or administrators, all the evidence for analysis and proofs from the
damaged system has been gathered and analyzed entirely. But, it may occur
that the amount of data for analysis of infringement becomes too much because
every set of evidence data that has been gathered has to be investigated on. Also,
the evidence for analysis and proofs may have been damaged by an attacker or
changed by the activity of a normal user. Especially, when the intentional in-
fringement against the system happens, the damage of the evidence for analysis
and proofs becomes more serious.

1.1 Previous Approaches for Correlation Analysis

The previous approaches based on correlation analysis aim at low False Posi-
tive(FP) and low False Negative(FN) rates, and log reduction by combining a
refining algorithm with a fast search algorithm. The correlation approaches are
classified into ones that do not require a specific knowledge and ones that rely
on a certain knowledge. The proposed approach is categorized into the approach
that relies on a certain knowledge.

As the approaches that use a specific knowledge, there have been made sev-
eral proposals: the Advanced Security Audit-trail Analysis on UniX(ASAX)[AS1]
[AS2] based on the rules that are formed as (prerequisite, actions), JIGSAW[SK1]
based on attack scenario, Chronicles[BH1] based on time reasoning, and others
such as EMERALD Mission-Impact Intrusion Report Correlation System(M-
Correlator)[Em1] and M2D2[BM1]. ASAX aims at supporting intelligent analysis
of audit trails. ASAX uses a general rule-based language to carry out its analy-
sis, named RUSSEL(Rule-baSed Sequence Evaluation Language) which aims at
recognizing particular patterns in files and triggering appropriate actions. The
audit trail is analyzed sequentially, record by record, by means of a collection
of rules. Active rules encapsulate all the relevant knowledge about the past of
analysis and it is applied to the current record by executing the rules for that
record. And then, it generates new rules and the process is initiated by a set of
rules activated for the first record. ASAX has some limitations in that there is
no real rules database and data types are limited within RUSSEL.

JIGSAW is based on the preconditions and consequences of individual at-
tacks. It correlates alerts if the preconditions of some later alerts are satisfied by
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the consequences of some earlier alerts. However, it does not correlate an alert
if it does not prepare for other alerts. For example, if an attacker tries several
variations of the same attack in a short period of time, JIGSAW will treat them
separately, and only correlate those that prepare for other alerts. Chronicles aims
at providing an interpretation of the system evolution given dated events. It is a
time series reasoning system that relies on the reified temporal logic formalism. It
predicts forthcoming events relevant to its task; it focuses its attention on them
and maintains their temporal windows of relevance. It is efficient in recognizing
stereotyped attack scenarios such as the ones launched by automatic intrusion
tools. EMERALD M-Correlator was designed to consolidate and rank a stream
of alerts relative to the needs of the analyst, given the topology and operational
objectives of the protected network. It uses a relevant score produced through
a comparison of the alert target’s known model against the known vulnerabil-
ity requirements of the incident type. M2D2 is a formal information model for
security information representation and correlation which includes four types of
information: information system’s characteristics, vulnerabilities, security tools
and events/alerts. M2D2 reduces and conceptually interprets multiple alarms,
i.e. it models alert aggregation method by utilizing relations between vulnera-
bilities and topology, between topology and security tools, as well as between
security tools and vulnerabilities. However, these approaches are focusing on the
efficient detection of intrusion attempt.

1.2 Proposed Approach

Before we describe the proposed approach, we first define the two following
terminologies that are used throughout this paper.

– Gathering means that we collect the evidence entirely for the investigation
of host infringement at the report time from administrators or users;

– Collection means that we collect the evidence selectively for the investiga-
tion of host infringement at the occurrence time.

As shown in the Fig.1-(b), different from the previous approaches that gather
the evidence for analysis and proofs entirely as in the Fig.1-(a), the proposed
approach focuses on the detection of real infringement against the observable
and protective hosts and focuses on collecting the forensic evidence at the time
of occurrence of intentional infringement against them. Noting that when the
infringement against the host occurs, it usually takes the form of a multi-step(or
stage) attack, we describe how to collect the evidence for both analysis and proofs
from the early stage of infringement such as Host Scanning(HS), Port Scan-
ning(PS) and Vulnerability Exploit(VE) to the final stage such as Distributed
Denial of Service(DDoS). After we classify the intrusion into the intrusion at-
tempt and infringement that means a real damage at the system, we calculate
the value of infringement severity representing the real infringement possibility
of the hosts in a multi-step attack. Based on the value of infringement severity
of the system for each attack step, we determine the time instant for the forensic
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evidence collection. To minimize the possibility of wrong decision on the time of
the forensic evidence collection, we correlate the event logs of the Intrusion De-
tection System(IDS) like the SNORT[Sn1] with the event logs and the security
configuration of the host during calculation of the value of infringement severity.
We store the evidence for both analysis and proofs at each step of a multi-step
attack as a status information for each stage. We summarize the contributions
of this paper in Table.1 by comparing with the previous approaches.

This paper is organized as follows. In section II, we describe the proposed
approach that calculates the value of infringement severity of the hosts and
collects the forensic evidence from the hosts based on the value. We describe
the verification result of the proposed approach in section III. In section IV, we
summarize the paper.

Table 1. Comparison with the previous log correlation and analysis methods

Previous approaches Proposed approach

� Detection of intrusion attempt � Detection of host infringement
Target � Forensic evidence gathering at � Forensic evidence collection at

the time of administrator(user) the time of infringement occurrence
report

� Correlation analysis among � Correlation analysis among
Analysis host event logs event logs of both IDS and host
method � Correlation analysis among � Calculation of the infringement

IDS event logs severity of hosts

� Accurate intrusion attempt � Measurement for the degree of
Effect detection i.e., low FP and FN real infringement of hosts

� Low loss of the forensic evidence
� Reduction of evidence for analysis

� Loss of evidence for both analysis � No way to collect some volatile
Limitation and proofs data

� Dummy analysis for not
infringement but intrusion attempt

� No way to collect any volatile
data

2 Infringement Decision and Forensic Evidence Collection

Now, we describe how to calculate the value of infringement severity of the hosts
for each attack step and which information should be collected. We assume the
general multi-step attack shown in Fig.2, for example, DDoS whose final attack
is given as Denial of Service(DoS).

2.1 Overall Description of the Analysis Objects and Its Procedure

As shown in Fig.3, the evidence for analysis is collected to a collaborative anal-
ysis server which monitors IDSes and the observable and protective hosts. The
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host 
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port 
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VE
DoS

attack
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Fig. 2. Infringement represented by stages and the possible attack flow, where the sold
line implies the beginning stage of infringement; the dotted line implies the infringe-
ment path selection on networks; the dashed line implies a final attack; Client is an
attacker; DoS is assumed to be an example of a multi-step attack. For example, Host
scan→Port scan→NETBIOS SMB NT Trans NT CREATE oversized Security Descrip-
tor attempt(represents the solid line up to this part)→Trin00 daemon install(represents
the dotted line)→DoS attack(represents the dashed line).

Table 2. Definition for the parameters or terms to the proposed approach

Parameters(terms) Description

State for infringement decision at stage s for the host with ip
state(s, IP) address as IP, where {the evidence for analysis at stage s,

the forensic evidence for stage s, infringed host IP(port),
attacker IP(port), patterns for event analysis}, s=1∼5 or
HS(:1), PS(:2), VE(:3), D(:4), DoS(:5)

Sub-state ss for infringement decision at stage s of host IP
state(s, ss, IP) when there are different evidence for analysis that shows

the same symptom of infringement at stage s, where same as
state(s, IP)

v(s, IP) The value of infringement severity of host IP at stage s

v(s, ss, IP) The value of infringement severity of host IP for sub-state ss
at stage s

pre-condition Conditions that the host infringement succeeds

post-condition Evidence for analysis of the infringement

ck(s) kth condition for the infringement decision at stage s
, where (pre-condition, post-condition)

cm(s, ss) mth condition for the analysis of sub-state ss at stage s
, where (pre-condition, post-condition) and s, m={1,2,...}

C(s) The set of pre-conditions at stage s composed of ck(s) and
cm(s, ss), where {ck(s), cm(s, ss)}

|C(s)| Number of the elements in C(s)

wt(s) Weighting factor for stage s which is tunable

wt(s, k) Weighting factor for kth condition at stage s which is tunable

wt(s, ss, m) Weighting factor for mth condition of sub-state at stage s
which is tunable

LoN Number of files for analysis of infringement

LiN Number of lines in each log file

State information at stage s for all the hosts where,
S(s) {analysis time, v(s, IP), total value of infringement severity at

stage s for all the hosts}
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Fig. 3. Diagram of the proposed approach for infringement decision and forensic evi-
dence collection

proposed approach analyzes the event logs of IDSes for detection of intrusion
attempt. The event logs and configuration informations of the hosts are used to
analyze the degree of infringement severity. From the beginning stage to the end
stage of a multi-step attack as shown in Fig.2, the approach identifies the in-
fringement for stage s of the hosts and store the evidence for analysis as the state
information. The state information includes the followings: who did the malicious
behavior such as hacking(Attacker IP(port)), what one did(the forensic evidence
at stage s), how one did(the evidence for analysis), where one did(Infringed host
IP(port)), when one did(time information of log). And then, if the value of in-
fringement severity exceeds a criterion for the forensic evidence collection at
each stage, the sever requests hosts to send the forensic evidence selectively and
stores them to the data storage.

2.2 Calculation of the Value of Infringement Severity and Collection
of the Forensic Evidence

Based on the parameters or terms that we define in Table.2, we now describe how
to calculate the value of infringement severity of the hosts and how to collect
the forensic evidence. We assume that the timer of the IDSes and hosts are
synchronized and the time stamps of logs from the IDSes and hosts are reliable.

– Step 1. Preprocessing
After we periodically, with time period T, collect the state information, i.e.,
state(s, IP) and sub-state(s, ss, IP), for analysis from the IDSes and the
hosts, we classify them into the corresponding information for each stage.

– Step 2. Calculation of the degree of infringement severity
Considering the time sequence of the evidence for analysis and the state
information at each stage, the Severity Management Server, called SMS,
calculates the degree of infringement severity of each host at each stage.
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Fig. 4. Flowchart for the infringement severity calculation at stage s for the host with
IP address as IP, where the computational complexity of the algorithm is given as
O(LiN ) because LoN�LiN and (number of indices given from the analysis of a file)
�LiN

In Fig.4, we describe how to calculate the degree of the infringement severity
in detail. If the received file is first given from the host with ip address as IP,
we compare the evidence for analysis of state(s, IP) with C(s) and calculate
the degree of infringement severity of the host with ip address as IP at each
stage. If lth line of log file f(post-condition) matches to one of ck(s)(pre-
condition), we calculate the degree of infringement severity by using the
following equation (1):

v(s, IP ) = v(s, IP ) + wt(s) ∗
|C(s)|∑
k=1

wt(s, k) ∗ b(ck(s)), (1)

where the binary variable b(ck(s)) is given as 1 if a pre-condition equals
a post-condition and 0 otherwise, and

∑|C(s)|
k=1 wt(s, k) = 1. On the other

hand, if lth line of log file f matches to one of cm(s, ss), we calculate the
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degree of infringement severity by using equation (2). We note that the same
information for infringement at each stage can be given from different log
files with the different degree of reliability. The case frequently happens in
the process of infection. For example, we assume that an attacker tries to
infect host A with Linux OS. The attacker executes some active processes
and leaves some traces. This trace may be found by executing a command, ‘ps
-atn’. However if a new process is executed from this host, this information
can not be found by executing the command (low reliability). On the other
hand, IDS can have a trace that a specific string found in the daemon of
attack tool is recorded, for instance ‘*HELLO*’ message. This information
does not change even if the other infection strings are detected by IDS(high
reliability). So, we need to set the different weighting factor for each case, i.e.,
the weighting factor for the analysis result with higher reliability should be
larger than that with low reliability. We calculate the degree of infringement
severity of each host by considering the subsets of C(s) grouped according to
the degree of reliability of records, where Ns means the number of subsets
in C(s) and Nss the number of elements in a subset.

v(s, IP ) = v(s, IP ) +
Ns∑

ss=1

wt(s, ss) ∗ v(s, ss, IP ) (2)

v(s, ss, IP ) = v(s, ss, IP ) +
Nss∑
m=1

wt(s, ss, m) ∗ b(cm(s, ss)), (3)

where the binary variable b(cm(s, ss)) is given as 1 if a pre-condition equals
a post-condition or 0 otherwise, and

∑Nss

m=1 wt(s, ss, m) = 1.
Related to the weighting factors, we note the followings. If the decision

at a stage is dominant to make an infringement decision for the final attack,
the weighting factor of the stage, wt(s), has a larger value compared to
the weighting factor of other stages. Also, if the decision based on a subset
is more important than others, the weighting factor of the subset, wt(s,
ss), is larger than others. Similarly we set larger values to more important
conditions than others. Generally, as the infringement stage is close to the
final stage, the weighting factors become larger and the weighting factor of
the final stage equals to the sum of other weighting factors ahead of it. We
also note that if the same symptom from the same log files is founded with
the time difference, we only store the new information.

– Step 3. Forensic evidence collection
Now, referring to the following criteria for the value of the infringement
severity given from step 2, we collect the forensic evidence for each stage
from the infringed hosts.
• Case 1. The infringement of a specific observable host: min.th(s)

< v(s, IP ) < avg.th(s), where min.th(s) is calculated by min[wt(s)*wt
(s,k)] or min[wt(s,ss)*wt(s,ss,m)] and avg.th(s) by wt(s)*(average value
of wt(s,k) with respect to k).
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We collect the forensic evidence for stage s from a specific observable
host with ip address as IP .

• Case 2. The infringement of a specific observable host and its
surrounding observable hosts: avg.th(s) < v(s, IP ) or sum.min.th
(s) <

∑
IP v(s, IP ) < sum.avg.th(s), where sum.min.th(s) is calculated

by the summation of min.th.(s) and sum.avg.th(s) by the summation
of avg.th(s).

We collect the forensic evidence for the final stage from a specific
observable host with ip address as IP and for stage s from the specific
host and its surrounding observable hosts. If avg.th(s) < v(s, IP ) is
satisfied, it means that post-conditions more than one which match to
pre-conditions or at least one post-condition which matches to a pre-
condition with larger weighting factor is found from analysis. Thus, we
need to suspect the possibility of the final attack against the specific
observable host with ip address as IP and of the infringement for stage
s against the specific host and its surrounding observable hosts.

• Case 3. The infringement of the observable and protective hosts:
sum.avg.th(s′)<

∑s′

s=1 v(s, IP ) or total.avg.th(s′)<
∑

IP

∑s′

s=1 v(s, IP ),
where total.avg.th(s′) is calculated by the summation of sum.avg.th(s)
for all the observable and protective hosts.

We collect the forensic evidence by state s’ from all the observable
hosts and by the final stage from the protective host. It means that all the
observable and protective hosts have high possibility of the infringement
by stage s’.

Now, in Table.3, we summarize which evidence for proofs should be collected
for each stage selectively.

Table 3. The forensic evidence collected from a host for each stage, where we assume
DoS as an example of a multi-step attack

Stage Forensic evidence

HS Nothing

PS date and time at the beginning of data collection(BT), open
TCP/UPD ports, date and time at the end of data collection(ET)

BT, the list of active processes, the useful information for the
VE system such as information of CPU, the version of OS, the operation

time of system, the domain name and the host name, information of
all swap partitions, all file systems, information for the mounted
file systems, ET

BT, image of physical memory, the list of modules in kernel memory,
Infection(D) active and doubt list of processes, the useful information for the

system, the cache table collected from arp and routing tables,
information of all swap partitions, all file systems, ET

DoS BT, the cache table collected from arp and routing tables, ET
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(b)

(c) (d)

(a)

(1)

(2) (3)

Fig. 5. Sequential operation of the prototype software under the attack scenario: (a)
shows the configuration of the prototype software where, (a)-(1) shows the real-time
degree of infringement severity of each host in terms of total value of infringement
severity for stages, (a)-(2) the real-time degree of infringement severity for various
stage of each host and (a)-(3) the real-time amount of evidence for analysis collected
from the hosts. (b), (c) and (d) show a sequential operation of the prototype software
under the attack scenario. (b) shows the operation in HS and PS, (c) in VE and
Infection and (d) in DDoS.

3 Implementation

In this section, we describe the performance evaluation results of the proposed
approach. To evaluate the performance of the proposed approach, we imple-
mented the Honeypot between the campus network and Internet as shown in
Fig.5-(a)-(1) and executed the DDoS attack against the Honeypot. We config-
ureed the Honeypot with one protective host, i.e., host S, and three observ-
able hosts, i.e., host A, B and C. By implementing the agent for analysis as
shown in Fig.5, we correlate the state information, i.e. state(s, IP), from the
hosts. As an example, we describe the process of the experiment in detail in
Appendix.

In the process of the experiment, we reduce can FN and FP for infringement
severity decision by using the following techniques. To reduce FN for infringe-
ment severity decision, we detect malicious packets by using the exact matching
algorithms in the SNORT. And, we collaborate the event logs from hosts and the
event logs from IDS. Also, to reduce FP for infringement severity decision, we use
the patterns of shorter length for each signature group. And, we assign the small
weighting factors for the conditions whose pre-conditions equal post-conditions
including the shorter patterns, otherwise large weighting factors. Additionally,
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we set a small weighting factor for the condition which matches the evidence for
analysis which can frequently change by the normal behavior.

3.1 Infringement Monitoring

As shown in Fig.5-(a), we implemented the prototype software of SMS. The mon-
itor of the agent consists of three parts. Fig.5-(a)-(1) is the panel which shows the
degree of infringement severity in terms of summation for stage values of each
host. Fig.5-(a)-(2) shows the degree of infringement severity for various stage of
each host. Fig.5-(a)-(3) compares the amount of logs for the proposed approach
with those for the previous approach which gathers the forensic evidence. From
Fig.5-(b) to Fig.5-(d), we show the real operation of this agent. While an at-
tacker executes HS and PS for host A, B, C and S, as shown in Fig.5-(b), the
colors of HS and PS indicators located at Fig.5-(a)-(2) change from white(zero)
to blue(medium severity). And then, while the attacker proceeds to VE and
infection for host A, B and C, as shown in Fig.5-(c), the colors of VE and D
indicators change from white(zero) to blue(medium severity). Finally, when the
attacker proceeds to DDoS, the color of DDoS indicator for host S changes from
void to red(high severity).

Another indicator located at Fig.5-(a)-(1) changes its color according to the
degree of total infringement severity for stages of each host. For HS and PS,
the color of the indicator changes from white to green. And then, for VE and
D, the color of the indicator changes from green(low severity) to blue(medium
severity). Finally, the color of the indicator for host S changes from green to red.
Thus, by referring to the colors of the indicators located at Fig.5-(a)-(1) and
Fig.5-(a)-(1), we can monitor the degree of infringement severity for observable
and protective hosts.

3.2 Performance Evaluation

We evaluated the performance of the proposed approach by changing the time pe-
riod T. We compare the amount of data collected from the hosts for two cases, i.e.,
the previous approach which gathers the evidence for analysis and the proposed
approach which collects the evidence for analysis. We show the comparison results
under the attack scenario in Fig.6 and Fig.7. For T=30sec, a total of 199213 bytes
of data and 80719 bytes(1681 bytes/T ) of data for the previous and proposed ap-
proaches are gathered and collected, respectively. Also, for T=10sec, a total of
100624 bytes(708 bytes/T ) of data for the proposed approach are collected. As
a result, under the same attack scenario, we get 60% and 49.5% evidence reduc-
tion for analysis so that it can reduce the analysis overhead caused by the dummy
data. But the proposed approach may increase the average load of SMS because of
the frequent access from hosts. On the other hand, it can reduce the peak load of
SMS by reducing the amount of evidence for analysis. Thus, to operate the agent
efficiently, we need to consider the size of analysis network. In the experiment, no
variation of the system resource usage such as CPU and memory was found but
we could reduce the amount of evidence for analysis.
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Fig. 6. Comparison of the total amount of evidence for analysis by varying the period:
previous(gathering) vs. proposal(collection)
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Fig. 7. Comparison of the average amount of evidence for analysis for different period
of the proposed approach

4 Conclusion

In this paper, we proposed an efficient forensic evidence collection scheme based
on the new approach of the detection of host infringement severity. For a multi-
step attack, the proposed approach collects the evidence for analysis such as
vulnerabilities, system logs and event logs from hosts and event logs from IDS.
From them, it makes a decision on the infringement of hosts based on the value
of infringement severity for each stage of a multi-step attack. From the decision
on real host infringement, the proposed approach collects the forensic evidence
at the time of infringement occurrence selectively. Also, it reduces the amount of
evidence for analysis. Thus, the proposed approach gives a guideline to determine
the forensic evidence collection at the time of host infringement selectively.
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A Appendix

A.1 Experiments

To analyze the performance of the proposed approach, we implemented the soft-
ware agent over the client-server model. We constructed a SMS with CPU of
clock speed 2.7GHz and DDRRAM 1Gb. To consider the graphical viewing of
the operation, we implemented the agent of the SMS over windows XP. For a
client, we made it operate over Pentium 3 CPU of clock speed 700MHz and
SDRAM 256MB. To expose vulnerabilities of the client Apache, PHP 4, Mysql
and Zeroboard 4.1pl5 over Linux RedHat 7.0 were operated. Based on these
system configurations, we executed the experiments under the traditional DDoS
attack scenario composed of the following sequential proceeding: Attacker finds
the victims(HS and PS up to this step)→Attacker installs Master program to
a host→Attacker installs Daemon program to other hosts(VE and D up to this
step)→Attacker executes DDoS attack(Final attack up to this step).

– Scenario step 1. Host and Port Scan: An attacker scans the observable
hosts, i.e., host A, B and C. By using Nmap[Nm1], the attacker tries to
know whether hosts A, B and C are alive and what is the type of OS of the
hosts(HS), and which port is open(PS).
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– Scenario step 2. Vulnerability Exploit and Infection: Now, based on
the results from HS and PS, the attacker installs an attack tool, i.e., DDoS
Trin00 daemon, over the observable hosts. That is, by using Nessus[Ne1], the
attacker gathers the vulnerability information of the hosts. And then, based
on collected vulnerabilities, the attacker installs a DDoS tool for each host.
Host A is used as Master and host B and C as Daemon.

– Scenario step 3. Final attack: The attacker executes DDoS attack from
host A, B and C to the protective host S.

The results of the experiment are as follows. Now, we describe the result of the
experiment based on the event logs of the SNOT and the event logs and the
configuration informations of hosts.

We could calculate the value of infringement severity for HS and PS as follows.

– Event logs related to HS
• SNORT log

(time) Auth.Alert IDS snort: [1:402:7] ICMP Destination Unreach-
able Port Unreachable [Classification: Misc activity] [Priority: 3]:
{ICMP} host A → attacker

– Event logs related to PS
• SNORT log

(time) Auth.Alert IDS snort: [122:3:0] (portscan) TCP Portsweep
PROTO255 attacker → host A

• iplog[Ip1]
(time) TCP: ssh connection attempt from attacker:43116

• Open port information collected from host A in advance
(time) 22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios

From the SNORT logs, HS and PS from attacker to host A were detected(intrusion
attempt). Based on the event logs from hosts, it was verified for hosts to be really
infringed because the scanned port to host A was really open at host A as shown
in the event logs of hosts(possibility of real infringement). From these evidences
for analysis, when wt(HS)=1, wt(PS)=2, wt(HS, 1)=0.4 and wt(PS, 1)=0.3 are
given, v(HS, host A) can be obtained by 1∗ (0.4∗1+

∑|C(1)|
k=2 wt(1, k)∗0)=0.4 and

v(HS, host B) can be obtained by 2∗(0.3∗1+
∑|C(2)|

k=2 wt(2, k)∗0)=0.6. Each value
is located between min.th.(HS or PS)(=0.1 or 0.2) and avg.th.(HS or PS)(=0.5 or
1). Thus, we collected the forensic evidences for stage HS and PS from host A.
With a small time difference, we got the similar results for host B and C. Here,
C(1) was given as {c1(1), c2(1)} and C(2) was given as {c1(2), c2(2)}, where c1(1)
was given as (Observable IP, IP scanned by attacker), c2(1) as (Observable subnet
list, subnet list scanned by attacker), c1(2) as (Open port collected from each host
in advance, Port detected by iplog for each host) and c2(2) as (Open port collected
from each host in advance, Port detected by the SNORT for each host).

We could calculate the value of infringement severity for vulnerability exploit
and infection to the hosts by using the following evidences for analysis.
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– Event logs related to VE
• SNORT log

(time) Auth.Alert IDS snort: [1:3018:1] NETBIOS SMB NT Trans
NT CREATE oversized Security Descriptor attempt [Classifica-
tion: Generic Protocol Command Decode] [Priority: 3]: TCP attacker:
2612 → host A:139

– Event logs related to infection
• SNORT log

(time) Auth.Alert IDS snort:[1:232:5] DDOSTrin00Daemon toMas-
ter *HELLO* message detected [Classification: Attempted Denial of
Service] [Priority: 2]: UDP attacker:1995 → host A:31335

From the SNORT log, VE attempt from attacker to host A was detected(intrusion
attempt) and from the vulnerability scanning of host A executed by using Nes-
sus in advance, we detected 40 vulnerabilities with the importance info, 14 with
the medium and 18 with the high, where the importance of vulnerability can be
info, medium or high. By comparing with the SNORT log, it was verified that
vulnerability of 139 port was one of 40 vulnerabilities with the importance info
at host A(possibility of real infringement). From this evidence for analysis, when
wt(VE)=3 and wt(VE, 2)=18/72 are given, v(VE, host A) can be obtained by
3 ∗ (wt(V E, 1) ∗ 0 + (18/72) ∗ 1

∑|C(3)|
k=3 wt(3, k) ∗ 0)=3/4. The value was located

between min.th.(VE)(=0.3) and avg.th.(VE)(=1.5).
Related to infection, it was found that a new active process operates at host A

which was connected to the daemon with strings found in DDoS tools(possibility
of real infringement). And the specific strings which were exchanged among
daemons were detected by IDS(intrusion attempt and possibility of real in-
fringement). Based on these evidences for analysis, when wt(D,2,3)=0.3 and
wt(D,3,1)=0.5 are given, v(D,2,host A) can be obtained by wt(D, 2, 1) ∗ 0 +
wt(D, 2, 2)∗0+0.3∗1=0.3, and similarly v(D,3,host A) can be obtained by 0.5∗
1=0.5. The value was located between min.th.(VE)(=0.3) and avg.th.(VE)(=5).
Thus, we collected the forensic evidences for stage VE and infection from host
A. With a small time difference, we got the similar results for host B and C.

Here, C(3) was given as {c1(3), c2(3), c3(3)} and C(4) was given as {c1(4, 1),
c2(4, 1), c1(4, 2), c2(4, 2), c3(4, 2), c1(4, 3)}, where c1(3) was given as (Vulner-
ability information collected from each host(high), Vulnerability information
scanned by attacker(high)), c2(3) as (Vulnerability information collected from
each host(medium), Vulnerability information scanned by attacker(medium))m
c3(3) as (Vulnerability information collected from each host (info), Vulnerabil-
ity information scanned by attacker(info)), c1(4, 1) as (Open port collected from
each host in advance, Open port collected from each host periodically), c2(4, 1)
as (access information for files collected from each host in advance, access infor-
mation for files collected from each host periodically), c1(4, 2) as (Active port
collected from each host in advance, Active port collected from each host peri-
odically), c2(4, 2) as (Active process collected from each host in advance, Active
port collected from each host periodically), c3(4, 2) as (strings of executable
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files, strings of daemon executing at each host) and c1(4, 3) as (strings given and
received among attack tools, strings detected by IDS, e.g., *HELLO* message).

Finally, we could calculate the value of infringement severity for DDoS attack
as follows.

– Event logs related to the final attack, i.e., DDoS
• SNORT log

(time) Auth.Alert IDS snort: [1:2339:2] TFTP NULL command at-
tempt [Classification: Potentially Bad Traffic] [Priority: 2]: UDP
host B:2029 → host S:69

As shown in the SNORT log, DDoS attack from host B to host S was de-
tected (intrusion attempt and possibility of real infringement). Based on the
evidence for analysis, when wt(DDoS,1)=0.7 and wt(DDoS,2)=0.3 are given,
v(DDoS,host S) can be obtained by 16 ∗ (0.7 ∗ 1 + 0)=11.2 and was larger than
avg.th.(DDoS)(=0.8). Also, attacks from host A and C were detected so that the
sum of severity values until stage DDoS exceeded total.avg.th.(=16). It means
that the real attack is affecting the operation of host S seriously. Here, C(5)
was given as {c1(5), c2(5)}, where c1(5) was given (-, the Snort for bad traffic)
and c2(5) as (port number of the specific DDoS daemon given from rand() func-
tion, port scanned from attacker for each host). Thus, we collected the forensic
evidences from host S.
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Abstract. A novel copy protection scheme for optical disks is proposed. Three 
error mechanisms – error insertion, error correction and error propagation – are 
included in the proposed scheme, which lead to a sharp cutoff in the detection 
probability of an encryption key. This cutoff behavior could be employed to 
effectively prevent bit-by-bit copying of optical disks. The proposed scheme 
can be easily implemented in common players, being a simple and effective 
copy protection technique.  

Keywords: copy protection, multi-level error coding, error-control coding. 

1   Introduction 

As digital data can be perfectly reproduced without degradation, copy protection of 
optical disks had attracted much research interest [1-4]. Most of the reported copy 
protection schemes aimed at encrypting the disk and/or the content, while the recorder 
was less considered. Because either physically-encrypted disks or software-encrypted 
contents (e.g. digital watermarking) cannot effectively prevent bit-by-bit copying, 
mass unauthorized copies can be made with low-cost recorders [5]. There were 
several schemes being designed against bit-by-bit copying. For example, the “disk 
wobble” technology proposed by Philips reshaped the grooves inside optical disks so 
as to prevent duplication of stored data [6]. The “optical fingerprinting” scheme 
designed by NEC prevented disk copying by modifying the reflectivity of some 
selected bits [7]. Although these schemes can prevent bit-by-bit copying via common 
recorders, their drawback is the requirement of special players equipped with 
sophisticated detection circuits, which limits their practical use. 

Error control coding had been extensively used in communications to improve 
system performance [8]. Here we adopt it alternatively to prevent bit-by-bit copying 
of optical disks. To the authors’ best knowledge, no similar approaches had been 
proposed before. In our approach, an encryption key is used to scramble the source 
content, and a multi-level error coding is subsequently designed to encode the 
encryption key. Next, some special bits called X-bits are introduced, being inserted 
into the encoded codeword block as potential errors. As will be clear later, wing to the 
multi-level error coding and the inserted X-bits, a sharp cutoff exists in the detection 
probability of the encryption key. This cutoff behavior sets a tight bound on the 
reflectivity of X-bits, thereby being able to effectively prevent piracy. 
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2   Multi-level Error Coding 

In the proposed approach, we apply the multi-level error coding to encode an 
encryption key as the first step to protect unauthorized copy. The multi-level error 
coding is composed of L levels with each level consisting of the word-extension 
process and the error-control coding process to be described below. 

2.1   Word Extension  

In our scheme, a binary word consisting of v bits ( v>1) is called a unit-word, being 
the basic unit in the signal processing. Let ),...,,(a v21 ααα=  and 

),...,,(b v21 βββ= be unit-words, where )1,0(, ii ∈βα . The mod-2 addition of a and b 

is given as 

),...,,(ba vv2211 β⊕αβ⊕αβ⊕α=⊕ ,                              (1) 

where the symbol “ ⊕ ” denotes mod-2 addition..  
Let m21 a,...,a,a  be m different unit-words having the following property:  

)0,..,0,0(a....aa m21 =⊕⊕⊕ ,                                     (2) 

Eq.(2) means that the mod-2 addition of m21 a,...,a,a  results in the all-zero unit-

word. For a given m, it is easy to generate a set of }a,...,a,a{ m21 which satisfies (2). 

Supposed that y is an arbitrary unit-word. We can extend y to be a codeword D 
composed of m unit-words, i.e. D }d,...,d,d{ m21= , where id  is a unit-word. This is 

called the word-extension process, which will be performed as below.  
Let }a,...,a,a{ m21 be a specific set of m unit-words satisfying (2) and m is an odd 

integer. The word-extension process is given as  

ii ayd ⊕= ,       m,...,2,1i = ,                                           (3) 

Using (3) we can easily obtain D for a given y. On the other hand, if D is given, y 
can be obtained via the reverse of word-extension as below:  

m21 d....ddy ⊕⊕⊕= ,                                                   (4) 

Since m is an odd number, it is not difficult to verify (4) by using (2) and (3). The 
codeword D obtained from (3) is named as the extended codeword (EC) of y. 

2.2   Error Control Coding 

As described before, a unit-word y can be extended to be a codeword D consisting of 
m unit-words. The codeword D can be further encoded by using forward-error-
correcting (FEC) codes.  

Reed-Solomon code (RS-code) is a well-known non-binary FEC code in which the 
basic unit in the coding process is a symbol consisting of several bits. Here RS-code 
with v-bit symbol is employed, i.e., a unit-word is a symbol in the RS-coding. We 
apply (s,m) RS-code to encode D to be a codeword E consisting of s unit-words. This 
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codeword E is called the FEC-coded codeword (FC). Thus, with the word-
extension/error-control coding process, we can transfer a unit-word y to be an FC 
with inherent error-correcting capability.  

2.3   Multi-level Error Coding 

In the proposed copy protection technique, an encryption key (K) consisting of k unit-
words is used to scramble the source content. This key will be protected from bit-by-
bit copying via the following multi-level error coding as well as the X-bit coding to be 
introduced in Section 3.  

In the beginning, a (n, k) RS-code with v-bit symbol is used to encode K to be a 
codeword C consisting of n unit-words, where C )c,...,c,c( n21= and ic  is a unit-

word. The codeword C will be further encoded by the multi-level error coding. 
In the 1st-level, each unit-word in C is first word-extended to be a 1st-level EC and 

then further encoded via (s,m) RS-code to obtain the corresponding 1st-level FC. As 
there are n unit-words in C, the total number of 1st-level FC’s originated from C 
is nN1 = , with each consisting of s unit-words. 

Let E be one of the 1st-level FC’s just obtained. In the 2nd-level, each unit-word in 
E is similarly encoded as before to generate the corresponding 2nd-level EC and 2nd-
level FC. Because E is composed of s unit-words, there are s 2nd-level FC’s generated 
from E. As there are N1 1

st-level FC’s, the total number of 2nd-level FC’s generated 
after the 2nd-level is snsNN 12 ⋅=⋅= , each again consists of s unit-words.  

The same process as described above will be carried out in all the L levels to 
accomplish the multi-level error coding. After the Lth-level, we will obtain LN  Lth-

level FC’s, where 1L
L snN −⋅= . Thus, with the multi-level error coding, we actually 

encode K to be a big codeword consisting of LN  Lth-level FC’s, whereas each Lth-

level FC consists of s unit-words and has the inherent error-correction capability. 
These Lth level FC’s will be further encoded by X-bits before stored in the optical 
disk.  

3   X-Bit Coding  

After the multi-level error coding, we obtain LN  Lth-level FC’s which will be further 

encoded by X-bits. The encoding of X-bits is the second step to accomplish the 
proposed copy protection scheme.   

3.1   The X-Bit  

Let A0 and A1 be the signal levels corresponding to binary 0 and 1 stored in the optical 
disk, respectively. Those bits with signal levels A0 or A1 are called normal bits. On 
the other hand, an X-bit has the signal level as  

 

χ+μ=χ+
+

=
2

AA
A 10

X ,                                      (5) 
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where μ  is the mean of A0 and A1, while χ  is a random variable accounting for the 

level fluctuation of X-bits during manufacture process. In practice, X-bit can be 
obtained by making its reflectivity close to the mean reflectivity of normal 0-bit and 
1-bit.  

In the proposed scheme, X-bits are contained in the LN  Lth-level FC’s and stored 

in the lead-in sector of the disk. X-bits can be detected with the double-read process, 
i.e., the lead-in sector containing X-bits would be read twice. For a given bit, if 
outcomes of two reading processes both are 1, it is recognized as a 1-bit; if both are 0, 
it is taken as a 0-bit; if two outcomes are different, an X-bit is assumed. Note that only 
the lead-in sector has to be read twice, so the time required for the double-read 
process is little. Moreover, common players can be used to detect X-bits without 
difficulty. 

Assume the random variable χ  in (5) be uniformly distributed within the 

interval ],[ αα− , where α  denotes the maximum deviation of XA  with respect to μ . 

In this case, the error probability in detecting X-bit via the double-read process can be 
calculated as [9] 

χ
σ

χ−⋅
σ

χ
α

−=α α
α− d)]

2
(erfc

2

1
1[)

2
(erfc

2

1
1)(P

nn
X,e ,                    (6) 

where )(erfc ⋅ denotes the complementary error function and 2
nσ  is the variance of 

noise encountered in the reading process.  
Fig. 1 illustrates X,eP  as a function of the normalized parameter n/' σα=α . We 

find that X,eP  increases with 'α  and has the minimum value of 0.5 when 0'=α . The 

result reveals that most X-bits cannot be successfully detected via the double-read 
process. This is the preferred property, since X-bits can be served as potential errors 
in the optical disk. 

 

Fig. 1. Pe,X as a function of the normalized parameter 'α   
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3.2   X-Bit Coding Process 

As described above, there are LN Lth-level FC generated via the multi-level error 

coding. Let Y )y,...,y,y( 1s10 −= be an Lth-level FC, where jy  is a unit-word. Within 

the s unit-words in Y, merely u of them will be encoded by X-bits. Those unit-words 
being X-bit encoded are called X-words, which will be served as potential errors in Y. 
We take btu += , where t is the error-correcting capability of the (s,m) RS-code, 
given as t=(s-m)/2, and b is an integer.  

The u X-words within Y are assigned by a simple algorithm which uses the first 

unit-word 0y  as the indicator. Let v2h0 ≤≤  be a decimal number corresponding to 

the binary content of 0y , then X-words in Y are indicated as 

smod)hi(ri ⋅= ,     i=1,2,…,u ,                                (7) 

Eq.(7) means that )y,...,y,y(
u21 rrr  within Y will be encoded as X-words. If 0ri = , 

we take 1ri =  to avoid 0y  being coded as an X-word. Moreover, if ij >  and ij rr = , 

then 1rr ij +=  is assumed. Thus we can always have u X-words in Y. 

Let )b,...,b,b(y v21= , }1,0{bi ∈ , be a unit-word in Y to be encoded as a X-word 

)e,...,e,e( v21=ξ , }X,1,0{ei ∈ . The coding can be accomplished by a mapping table 

such that there is a one-to-one mapping between y and ξ . Let β  denote the number 

of X-bits in ξ . For a given v, if the following inequality  

β
β

β−
β >>⋅ 2C22C vvvv ,                                     (8) 

is satisfied, we can always design a mapping table which has one-to-one mapping 
between y and ξ  (details of the mapping table is omitted here). Thus, with X-bit 

coding, )y,...,y,y(
u21 rrr  in Y will become X-words. 

After X-bit coding, each Lth level FC will contain u X-words plus us −  normal 
unit-words, while an X-word contains β  X-bits and β−v  normal bits. All the LN  

Lth-level FC’s will be stored in the lead-in sector of the optical disk. As the error 
probability in detecting X-bit is high, the error probability in detecting X-words is 
high as well. However, due to the multi-level error coding, it is still possible to 
recover the encryption key through RS-decoding.  

4   Decoding Process 

4.1   X-Bit Decoding 

As described above, there are LN  Lth-level FC’s stored in the lead-in sector of the 

optical disk. This disk can be read by common players in which a special decoding 
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algorithm was installed. When the disk is played, the decoding algorithm will guide 
the player to read the lead-in sector twice in order to decode the encryption key.  

We begin with the decoding of X-bits. Let W )w,...,w,w( 1s10 −=  be an Lth-level 

FC consisting of s unit-words with u of them being X-words. In the first reading 
process, all the s unit-words in W are detected, including those X-words. For 
simplicity, we assume all the normal bits be correctly detected without error, while 
detail performance analysis will be given in the next section.  

After the first reading process, the locations of X-words within W are indicated by 
the first unit-word 0w via (7). Although the locations of X-words are known, the β  X-

bits inside an X-word must be detected via the second reading process. Let jw  be one 

of the X-words in W to be decoded. If all the β  X-bits in jw  are successfully detected 

in the second reading process, the original content of jw  will be obtained via the 

mapping table mentioned in Sec. 3.2. If one or more than one X-bits are not detected, 
the decoding algorithm will assume a random decoded word to jw  (with the 

probability of v2/1  to simulate the original content of jw ).  

After X-bit decoding, W became a decoded Lth-level FC within which some of the 
s unit-words inside W might be erroneous. In particular, most of the errors are coming 
from u X-words but not normal words. However, it is still possible to recover the 
corresponding Lth-level EC, if the number of erroneous words in W is within the 
error correcting capability of the RS-code. 

4.2   Multi-level Decoding 

Let W’ be an X-bit decoded Lth-level FC, which may contain some errors within the s 
unit-words. In the Lth-level decoding, we perform RS-decoding to recover the 
corresponding Lth-level EC. If the number of erroneous words in W’ is within the 
error correcting capability of the (s,m) RS-code, the decoded Lth-level EC will be 
correct; otherwise, it will be erroneous. Thus, after the Lth-level decoding, we obtain 

LN  Lth-level EC, with some of them might be erroneous.  
In the (L-1)th-level decoding, each unit-word in an (L-1)th-level FC can be 

obtained from the corresponding Lth-level EC via the reverse of word-extension 
process given in (4), and then an (L-1)th-level FC can be obtained from s Lth-level 
EC’s. Thus 1LN −  (L-1)th-level FC’s will be obtained from LN  Lth-level EC’s. Next, 
each (L-1)th-level FC is RS-decoded to obtain the corresponding (L-1)th-level EC. 
Again if the number of erroneous unit-words in an (L-1)th-level FC is within the error 
correcting capability of RS-code, the decoded (L-1)th-level EC will be correct. 
Otherwise, it will be erroneous. 

The same process described above can be carried out until the 1st-level to obtain n 
1st-level EC’s. Then, using the n 1st-level EC’s, the codeword C can be regained via 
the reverse of word-extension. Finally, the encryption key (K) can be recovered via 
the (n,k) RS-decoding. This completes the decoding process. 
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5   Performance Analysis 

Let eP  denote the error probability of detecting a normal bit, then the probability of 

correctly detecting a normal unit-word is given as v
en )P1(P −= . Meanwhile, as 

there are β  X-bits and β−v  normal bits in an X-word, the probability of correctly 

decoding an X-word is approximately expressed as  

vX,e
v

eX,ed
2

1
])P1(1[)P1()P1(P ⋅−−+−−≈ ββ−β ,                      (9) 

where the first term in the right-hand side of (9) is the probability that all the X-bits 
and normal bits in the X-word of concern are correctly detected, while the second 
term is the probability that at least one X-bit is not detected, but the random decoded 
word assumed by the decoding algorithm happens to simulate the correct content.  

If W is an Lth-level FC consisting of u X-words and s-u normal words, the 
probability that exactly r erroneous words occurring in W after X-bit decoding is 
given as 
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Let Y be the Lth-level EC obtained from W through RS-decoding and t be the 
maximum number of correctable errors in the (s,m) RS-code. If tr ≤ , then Y can be 
correctly decoded. Hence the probability of correctly decoding Y is written as 

=
=

t

0r
LL )r(PP ,                                                     (11) 

Next, we analyze the performance of the (L-1)th-level. Assume Z )z,...,z,z( S21=  

be an (L-1)th-level FC consisting of s unit-words. In the decoding process, each zi is 
obtained from the corresponding Lth-level EC via the reverse of word-extension 
process indicated in (4). Thus the correct probability of zi is equal to that of the 
corresponding Lth-level EC, i.e. LP . Therefore, the probability that exactly r 

erroneous words occurring in Z is written as 

rs
L

r
L

s
r1L P)P1(C)r(P −

− −= ,                                           (12) 

If tr ≤ , the (L-1)th-level EC corresponding to Z can be correctly decoded through 
RS-decoding. Thus the correct probability of decoding an (L-1)th-level EC is 
calculated as 

rs
L
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L
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t

0r
1L
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1L P)P1(C)r(PP −

=
−

=
− −== ,                               (13) 

The relationship of (13) can be similarly applied to the other levels. In general, we 
have 
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rs
j
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0r
1j P)P1(CP −

=
− −= ,     j=2,3, …L,                           (14) 

where jP  and 1jP −  are probabilities of correctly decoding the jth-level EC and the (j-

1)th-level EC, respectively.  
Fig. 2 shows jP  versus 'α  at different decoding levels with L=4. We find that all 

jP ’s intercept at a special point, denoted as )P,'( cutoffCα , where cutoffP  is defined as 

the cutoff probability. Also notice that the curve of 1P  (the correct probability of 

decoding a 1st-level EC) approaches a rectangular-shape with a sharp cutoff at 

C'' α=α . In the region C'' α<α , we have 1P1 → ; while in the region C'' α>α , we 

have 0P1 → .  

 

Fig. 2. Pj  versus 'α  at different decoding levels, with L=4, v=5, 1=β , b=13, s=31,  m=5 and 
5

e 10P −=  

The results of Fig. 2 can be explained as follows. At C'' α=α , we have 

cutoff1jj PPP == − , indicating that the decoding process does not affect the 

performance. In the region C'' α<α , we have j1j PP >− , revealing that the mean 

number of erroneous words in the (j-1)th-level EC is decreased so that 1jP −  increases. 

In contrast, we have j1j PP <−  in the region C'' α>α , indicating that the mean number 

of erroneous words in the (j-1)th-level EC is increased, i.e., error propagation occurs 
in this region. Owing to the strong error-correcting capability of RS-codes in the 
region C'' α<α  and the fast growing error propagation effect in the region C'' α>α , 

eventually we obtain the special curve of 1P .  
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After the 1st-level decoding, we have n 1st-level EC’s with correct probability 1P . 

Then the original codeword C can be obtained through the reverse of word-extension 
process, and the encryption key K is recovered through the (n,k) RS-decoding. As the 
maximum number of allowable errors in an (n,k) RS-code is 2/)kn( − , the 

probability of correctly recovering K is expressed as 

rn
1

r
1

n
r

2/)kn(

0r
key P)P1(CP −−

=
−= ,                                 (15) 

Fig. 3 illustrates the relationship between keyP  and 'α  for different values of b. 

Again all the curves approach the rectangular shape with a sharp cutoff. In each 
curve, if 'α  is below the cutoff level, K is guaranteed to be correctly decoded since 

1Pkey → . Otherwise, it is almost impossible to decode K since 0Pkey → . We also 

find that the parameter b has significant affect on the cutoff level, which can be used 
to achieve the desired value of C'α . 

 

Fig. 3. Pkey versus 'α  for different RS-codes, where L=3, v=5, 1=β  , s=31, m=5, n=31, k=11 

and 5
e 10P −=  

In Fig. 3, we have 22.0'C ≈α  for the case of 13b = , indicating that K can be 

successfully recovered only if 22.0'<α , i.e. n22.0 σ<α . Recall that α  is the 

maximum deviation of XA  with respect to μ  while nσ  is the standard deviation of 

noise encountered in the reading process, the above requirement sets a tight bound on 
the signal level of X-bits since nσ  is usually very small. For authorized disks pressed 

by well-equipped factories, this specification can be met by special equipments with 
ultra-high precision in making X-bits, i.e., the reflectivity of X-bits should be within 
the tight specification imposed by n22.0 σ<α . In contrast, it will be very difficult to 

reproduce X-bits without such equipments. If these ultra-high precision equipments 
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are offered by few companies and their access is well controlled, then bit-by-bit 
copying will be effectively prevented. 

6   Discussion 

The cutoff phenomenon illustrated above is accomplished by the multi-level error 
coding which includes three error mechanisms, i.e., error insertion, error correction 
and error propagation. The introduction of X-bits is to artificially insert errors into the 
disk, being used to prevent bit-by-bit copying. The error correction capability 
provided by RS-codes is able to recover the encryption key if X-bits are precisely 
made. Meanwhile, the phenomenon of error propagation is implicitly present in the 
decoding process. The multi-level error coding results in a tight bound on the 
reflectivity of X-bits, being a severe obstacle for bit-by-bit copying.  

In the proposed scheme, the locations of all X-bits in the disk can be known via 
repeated read-detect process and then the original content of the encryption key can 
be known. However, knowing the key is of no use to make a copied disk be 
successfully played. As the decoding algorithm installed in the firmware of players 
cannot be modified, a copied disk without X-bits will be randomly decoded so that the 
source content will be lost. Using the proposed scheme, casual piracy via common 
recorders is definitely prohibited since X-bits cannot be reproduced. On the other 
hand, professional piracy will be prevented as well, if the access of those ultra-high 
precision equipments in making X-bits is well controlled. Moreover, as the double-
read process necessary to detect X-bits can be easily implemented in common players, 
the proposed scheme is a feasible and practical copy protection technique.   

7   Conclusions 

A copy protection scheme based on multi-level error coding is proposed. We 
introduce X-bits into the optical disk serving as potential errors. We further design the 
multi-level error coding scheme cooperated with X-bit coding to achieve a sharp 
cutoff in the detection probability of encryption key. This cutoff behavior sets a tight 
bound on the reflectivity of X-bits, thereby making bit-by-bit copying of optical disks 
very difficult. The multi-level error coding consists of three error mechanisms, being 
an effective approach to prevent unauthorized copying. In the future, we will look for 
other possible codes and improve the coding algorithm to further control the cutoff 
level so as to realize a robust copy protection technique.  
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Abstract. The purpose of digital rights management (DRM) is to pro-
tect the copyrights of content providers and to enable only designated
user to access digital contents. For a user to share the contents among
all his devices in the home network, several domain-based approaches
that group multiple devices into a domain have been proposed. In these
approaches, however, each device in a domain has equivalent rights on
all contents although certain contents require an access control between
the devices. In this paper, a new DRM system for home networks is
presented. This system enables access control on the contents by a right
delegation strategy with proxy certificates. Moreover, it also provides ad-
ditional functionalities, including restricted sharing and temporal sharing
of contents, which are necessary for ordinary scenarios in home networks.

Keywords: DRM, domain, right delegation, proxy certificate.

1 Introduction

Digital rights management (DRM) is the term referring to any of several tech-
nologies used to enforce pre-defined policies controlling access to music, movies,
or other digital data. The main purpose of DRM is to protect the copyrights
of digital content providers and to enable distribution and access control of the
content. Since the advent of personal computers, digital contents have become
easy to copy an unlimited number of times without any degradation in the qual-
ity of subsequent copies. The popularity of the Internet and file sharing tools
have made the distribution of copyrighted digital media files simple. Therefore,
a novel DRM system is necessary for the benefit of content providers.

One of the first and most widely contested DRM systems was the Content
Scrambling System (CSS) used to encode DVD movie files [2, 3]. This system was
developed by the DVD Consortium as a tool to influence hardware manufacturers
to produce only systems which did not include certain features. By releasing
the encryption key for CSS only to hardware manufacturers who agreed not to
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include features such as digital-out, which would allow a movie to be copied
easily, the DVD Consortium was essentially able to dictate hardware policy for
the DVD industry.

From the consumers’ point of view, they have a tendency to dislike complex
and confused restrictions. This aptitude obstructs the growth of DRM market.
Moreover, consumer’s right of using legally acquired contents may be harmed by
arbitrary limitations. Especially, if someone legally purchases a digital content,
he wants to play the content freely on any of his multiple devices such as PC,
PDA, and MP3 Player. If he should purchase the content per each device sepa-
rately, he not only feels inconvenience to using the content but also may spend
extra money.

The concept of Authorized Domain (AD) has been presented to resolve such
problems [8, 10, 12]. The devices of a consumer organize a group, named autho-
rized domain, and the access right on the content is given to the group instead
of each device. Once he purchases the content, he can play it on any of devices
registered in the domain. Especially, Popescu et al. [11] present a security ar-
chitecture for AD with compliance checking protocol which is targeted on home
network environments. In these systems, a domain is considered as an entity,
and contents are shared with all devices in a domain. Thus, each device has
equivalent access rights on the contents, just if it is registered. However, certain
contents such as adult contents, which are not allowed to children, are to be
managed with access control.

In this paper, we present a DRM system for home networks based on the
right delegation strategy that controls the access rights of each device. A domain
manager stands for all devices within its home network, and it obtains access
rights on all digital contents for the home network. When a proper device wants
to access a content, corresponding access right is delegated from the manager
to the device. To check the validity of right delegation, a proxy certificate is
utilized in the system. Moreover, the system provides additional functionalities
including restricted content sharing and temporal content sharing.

The rest of the paper is organized as follows. In Section 2, previous DRM
systems are reviewed and the motivation is described. Also, the functional re-
quirements for home networks are described. In Section 3, a right delegation
strategy with proxy certificate is explained. In Section 4, a DRM system to
which the delegation strategy is applied is provided. In Section 5, two revoca-
tion mechanisms of proxy certificates are discussed. In Section 6, we show that
the provided DRM system satisfies the functional requirements. Finally, some
conclusions are made in Section 7.

2 Related Work and Motivation

Until the Authorized Domain (AD)-based DRM approaches are proposed [6, 8,
10, 12, 14, 16], there have been few approaches to address the DRM in home
networks. The AD-based DRM technology enables all devices in the same domain
to use and share the DRM contents freely. A domain can be either a home



Digital Rights Management with Right Delegation for Home Networks 235

network, a personalized network, or any network which has several rendering
devices such as PC, MP3 Player, PDA, and Video Player.

To the best of our knowledge, the most recent work considering DRM in home
networks is Popescu et. al.’s approach [11]. In their work, there exists a Domain
Manager (DM) per each home network which has a role of the registration and
revocation of compliant devices in AD. DM also manages the keys to be used
by each compliant device for the authentication and encryption of the DRM
content.

xCP [16], proposed by IBM, is an AD-based DRM architecture that employs
the broadcast encryption for secure content distribution and membership man-
agement. Due to the use of broadcast encryption, xCP needs expensive cost to
revoke the members in a domain because the size of the new Media Key Block,
which is used to exclude the keys of the revoked devices, is relatively large.

Other recent approaches, such as Windows Media DRM and IBM Electronic
Media Management System, neither target on the DRM in home networks nor
provide a domain-based management functionality [13, 1, 9, 4, 21, 7].

OMA (Open Mobile Alliance) DRM standard [10] also provides AD function-
ality. In OMA DRM, the centralized Rights Issuer (RI) manages all domains
respectively. All compliant devices should negotiate with the RI to be registered
in a domain. This centralized AD management gives much burden on the RI.
Moreover, if a compliant device cannot be connected with the RI either directly
or indirectly via a proxy device, it cannot be registered to or revoked from the
domain. Since RI can acquire the information about all registered compliant
devices in each domain, the privacy of each AD can be disturbed.

In the first subsection, we describe an overview of OMA DRM system because
our work is based on the OMA DRM system. In the second subsection, the
motivation of our work is provided. Finally, the third subsection provides the
functional requirements that the proposed DRM system should meet.

2.1 OMA DRM System

The purpose of OMA DRM system is to enable the distribution and consumption
of the DRM content in a controlled manner. The content is distributed and
consumed on authenticated devices according to the access rights prescribed by
the content owners. This system provides mechanisms for secure authentication
of devices, secure packaging, and secure transfer of both DRM content and access
rights. The system relies on the existence of a Public Key Infrastructure (PKI).
The following functional entities consist of the DRM system:

– Content Provider (CP): The content provider offers digital contents such
as movies and audio contents. The contents are transferred not to the users
directly, but to the content issuer.

– Content Issuer (CI): The content issuer has a responsibility for transfer-
ring the contents to the DRM agents. For secure transferring, the content is
re-packaged so that only the purposed agent can obtain the content.
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Fig. 1. Overview of OMA DRM system

– Rights Issuer (RI): The rights issuer assigns access rights to a DRM con-
tent, and generates a Rights Object (RO) for the DRM agent that legally
purchases the content. The RO governs how the content can be used by the
DRM agent.

– DRM Agent: The DRM agent is a trusted entity in a device. The agent is
responsible for enforcing access rights specified in the RO.

Fig. 1 shows the overview of OMA DRM system, which works as follows:

1. A user pays to the content provider for a DRM content he wants.
2. The content issuer transfers a protected content in which the content is

encrypted with a Content Encryption Key (CEK).
3. The rights issuer generates an RO which contains a CEK. Then the RO is

transferred securely to the user’s DRM agent.
4. Then DRM agent obtains the DRM content by decrypting the protected

content with the CEK in RO. It also checks the access rights specified in the
RO. Then, the agent plays the content.

2.2 Motivation

To the best of our knowledge, there are no previous AD-based approaches that
give each device in a domain a separated access right for DRM contents; in other
words, all compliant devices in the same domain have the same access right.1

1 We only deals with the domain based rights object. Actually, if a device gets a rights
object only for itself, the privacy problem is not happened. However, the content
which corresponds to the rights object cannot be shared or redistributed without
reissuing the rights object by RI; it is not scalable and burdensome to RI.
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This causes a number of privacy and security problems. For example, suppose
that a user A registers a friend B’s device in her home network for B to listen
her favorite music.2 In this case, if the previous approaches are applied, B can
access A’s all DRM contents in her home network as well as the favorite music
file that A is allowed for B to listen. Thus, B can see any secret DRM contents
that A does not want to share.

Therefore, in order to remove these potential security and privacy problems,
a novel method that can control the access rights of each device per DRM
content should be provided. Our main objective in this work is to resolve this
problem.

2.3 Functional Requirements

In addition to addressing the drawback described in the previous subsection, the
proposed DRM system aims to provide the following functional requirements.

– Local domain licensing: The RI can delegate the right of local domain
licensing to the Local Domain Manager (LDM).

– Contents local sharing: The contents which belong to a device can be
shared with other devices in the same local domain.

– Transferring RO: The RO which belongs to a device D1 can be transferred
to another device D2. After transferring, D1 should not be able to use the
transferred RO.

– Restricted Sharing: It should be provided how to share a content with
only designated devices in the local domain.

– Temporal Sharing: A device D1 can temporally share a content with the
device D2 placed near D1, although it is not registered in the local domain.

– Revocation: RI can revoke the right of local domain licensing that is given
to the LDM.

3 Right Delegation by Proxy Certificate

In this section, we provide a right delegation method with proxy certificate.
The first subsection describes an overview of proxy certificate, and the second
subsection describes how to apply the proxy certificate to the localized right
delegation for DRM.

2 We assume that the temporal access right of digital contents can be provided to
unlicensed party. This temporal access right can be controlled with the various ways
such as proximity test and access time limitation.
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Fig. 2. Delegation protocol in X.509 proxy certificate profile

3.1 Overview of Proxy Certificate

The proxy certificate profile is an extension of ITU-T X.509 Public Key Infras-
tructure [18, 19]. It enables an entity (Right Grantor) to delegate all or a part of
its right to another entity (Right Grantee). Currently, it is implemented for the
GSI (Globus Security Infrastructure), which is included in the Globus Project
[20], the world wide research project for computational grids. A proxy certificate
includes the issuer name, subject name, description of delegated access rights,
and the proxy public key which is used to exercise the delegated right. It is
signed by the Right Grantor to prevent malicious modification.

The delegation protocol in X.509 proxy certificate is motivated from Neuman’s
work [15] which proposed the certificate-based right delegation method between
objects. The detailed protocol description is shown in Fig. 2. After the protocol,
the Right Grantee keeps the proxy certificate which has following properties:

1. Dynamic: The delegation can be established and canceled by a right grantor
or grantee dynamically.

2. Light-weight: The delegation procedure needs just small computation and
communication resources.

3. Restricted delegation: It is possible that the right grantor delegates only
what the right grantee needs. Delegation of excessive rights causes more
damage if the right grantee is exposed to an outside attacker.

4. Repeated delegation: It can be happened that the delegated right can be
re-delegated to another entity.

3.2 Application to DRM

The proxy certificate in our work gives a domain manager an ability to lo-
cally license the devices in a domain to render the DRM contents. To exercise
the localized licensing, the manager first gets a proxy certificate that represents
the licensing ability is delegated from the RI. The RI can put restrictions on the
delegated licensing right by describing them in the issued proxy certificate.
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After receiving the proxy certificate, the manager can grant a delegated access
right on the DRM content to an individual device. As the domain manager can
give various access rights to each device, the access control functionality for
the devices in the same domain is possible. With the granted access right and
the proxy certificate, each device in the domain can render the DRM content
corresponding to the right after verifying them.

4 DRM System for Home Networks

4.1 Overview

In this section, we propose a new DRM system for local domain management in
home network environments. A home network is a good example of a localized
domain. However, our system is not restricted to only home network environ-
ments.

A home network interconnects electronic products/systems such as PCs, mo-
bile phones, digital audio/video, or digital TV, enabling remote access to and
control of those products/systems, and any available content such as music,
video, or data [17]. The typical home network consists of a home gateway that
connects inside home network to the outside public network, in-home intranets
such as phone-line, power-line, or wireless network, and home devices that in-
volve home networking facilities.

As we pointed out previously, the concept of AD-based DRM is insufficient
for the local domain environments such as home networks. Therefore, we pro-
pose a new concept of “local domain management with delegation”. To support
this delegation concept, a new functional entity, namely Local Domain Manager
(LDM), is required. The LDM is delegated the rights of issuing Delegated RO
(DRO) from the RI, so that it should be a trusted entity. The LDM also manages
the membership of devices within its local domain.

The LDM should be secure and reliable, and it also should have an “always-
on” property. Moreover, it should have reasonable computing power because the
generation of DRO requires time-consuming public-key operations. The home
gateway satisfies these requirements of the LDM. Therefore, we consider that a
home gateway plays the role of an LDM, which is shown in Fig. 3.

In Fig. 3, we show a flow of a DRM content from the CI to the DRM agent of
a device in a home network. When a user pays to the CP for a DRM content he
wants, the CI transfers a protected content with a legal RO to the DRM agent.
This content should be also played in other devices that are members of home
network. To support this capability, the RI delegates the right of issuing DROs
within the limits of home network use. For this, the RI transfers a Local Domain
RO (LDRO) for the purchased content, which is only accessible to the LDM,
and a proxy certificate together. When a device in the home network requests
an RO for that content, the LDM generates a DRO, which is only accessible
to the DRM agent in that device, and transfers both this DRO and the related
proxy certificate. The DRM agent verifies the legality of the proxy certificate
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Fig. 3. DRM functional architecture for delegated local domain

and the satisfaction of specified constraints described in the DRO. When all
requirements are satisfied, the DRM agent plays the content.

In the following subsections, we present more detailed processes of issuing
proxy certificate by an RI, issuing DRO by an LDM, and verifying both DRO
and proxy certificate by a device.

4.2 Issuing Proxy Certificate for RO

Let the RI have a public-private key pair (PKRI , SKRI) and its certificate
CertRI . Let the LDM also have a public-private key pair (PKLDM , SKLDM)
and its certificate CertLDM .

After a legitimate payment process, the LDM obtains a protected content
which is encrypted with a CEK from the content issuer. At this point of time,
he has no access right on the content, although he holds the protected content,
because he does not hold a corresponding RO.

The RI issues two kinds of credentials about the content: a rights object
associated with the content, and a proxy certificate for LDM. The rights object
specifies that the LDM has a right to use the content. The proxy certificate
specifies that the LDM can issue DROs for domain devices of his own. The
detailed protocol is described as follows.

1. RI ↔ LDM
The RI and LDM establish a mutual authentication protocol which is pro-
vided in X.509 standard.

2. LDM → RI : {PKPI}SKPI

The LDM generates a public-private key pair (PKPI , SKPI) for proxy is-
suing DROs. The public key PKPI is signed by the private key SKPI and
sent to the RI.
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3. RI → LDM : {LDRO}SKRI , {CertPI}SKRI

The RI generates an LDRO for the content. The LDRO specifies permissions
and constraints associated with the usage of the content. The CEK is en-
crypted with the public key PKLDM , and it is also contained by the LDRO.
The RI checks the validity of the signature {PKPI}SKPI with PKPI . Then,
the RI issues a corresponding proxy certificate CertPI including PKPI . The
certificate specifies permissions and constraints to issue DROs associated
with the LDRO. The LDRO and CertPI are signed by SKRI respectively,
and sent to the LDM. From the LDRO, the LDM obtains the CEK and can
access the protected content. Then he verifies the proxy certificate.

Fig. 4 shows an example of an LDRO and corresponding proxy certificate.
The content identifier field in both the LDRO and certificate binds them to the
associated DRM content.

Local domain RO

Issuer : RI

Subject : LDM
Content Identifier : 00000001

Validity period : 06.3.1~07.2.28

Usage count : 10

Encryption key : {CEK}

Signature by SK
RI

PK
LDM

Proxy Certificate

Issuer : RI

Subject : LDM
Content Identifier : 00000001

Public key : PK
PI

Validity period : 06.3.1~06.3.31

Delegation count : 3

Signature by SK
RI

Fig. 4. Issuing local domain RO and proxy certificate

4.3 Issuing Delegated RO by LDM

Suppose that a user wants to play the purchased content with one of his devices
in the home network. The device D has a public-private key pair (PKD, SKD)
and a certificate binding the public key with the device. The protected content
is provided from the LDM or from other devices by the super-distribution. To
play the content, D should acquire the access right on the content.

After the LDM and D authenticate each other with certificates, the LDM
issues a DRO (e.g., in Fig. 5) to the device by the following steps:

1. The LDM obtains the CEK from the corresponding LDRO by decrypting it
with SKLDM .

2. The CEK is encrypted with D’s public key PKD. Then the ciphertext is
contained in the DRO.

3. The LDM describes D’s delegated access rights in the DRO within the scope
of his own rights.

4. The DRO is signed by the proxy private key SKPI . Then the DRO is sent
to the device with the proxy certificate issued by RI.
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Delegated RO

Issuer : LDM

Subject : device D
Content Identifier : 00000001

Validity period : 06.3.1~06.3.7

Usage count : 2

Encryption key : {CEK}

Signature by SK
PI

PK
D

Proxy Certificate

Issuer : RI

Subject : LDM
Content Identifier : 00000001

Public key : PK
PI

Validity period : 06.3.1~06.3.31

Delegation count : 3

Signature by SK
RI

Fig. 5. Issuing delegated RO for a device

4.4 Verifying DRO and Proxy Certificate

A device in home network obtains a protected content, a DRO to the content,
and a proxy certificate by the above steps. Let assume that the DRM agent
in the device has a list of trusted RIs’ certificates. Before playing the content,
the agent checks the validity of both the DRO and the proxy certificate by the
following steps:

1. The agent verifies the signature in the proxy certificate with PKRI in CertRI .
It also checks the validity period and recognizes delegated access rights spec-
ified in the proxy certificate. Then, it obtains PKPI .

2. The agent checks whether the content identifier in the DRO matches the
content identifier in the proxy certificate. It also checks the validity period
in the DRO. With PKPI , it also verifies the signature in the DRO. Then, it
obtains CEK by decrypting {CEK}PKD with SKD.

3. The agent checks whether the received access rights and the validity period
in the DRO are within the scope of the proxy certificate. Then, it decrypts
the protected content with CEK, and plays the content.

For example, Fig. 5 shows that now the device D obtains the capability to
play the content, whose identifier is 00000001, at most twice during one week.

5 Revocation Mechanisms

To provide the revocation functionality that is described in Section 2.3, the
proposed DRM system presents two revocation methods: the proactive method
and the reactive method.

5.1 Proactive Method

In this approach, the RI issues the proxy certificate to the LDM with only a
short validity period. If the period is passed and the proxy certificate is expired,
the LDM requests the RI to renew the proxy certificate. If the requested LDM
is known as a compromised one, the RI can revoke the LDM by not renewing
the proxy certificate. Otherwise, the RI renews the proxy certificate of the LDM
and sends the renewed proxy certificate to the LDM.
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From the view of the revocation, this approach is very efficient as the certifi-
cate revocation list is not needed. However, since the LDM frequently accesses
the RI to renew its proxy certificate, a reliable communication channel between
the LDM and the RI is required. Moreover, if a device is out of the home network
but is preserving its local domain membership, the device can play the DRM
content only until the current proxy certificate is valid.

5.2 Reactive Method

In this approach, the RI periodically issues the proxy certificate revocation list
(PCRL) which is signed by the RI, and sends it to each LDM. Before rendering
a new DRM content, an individual device requests the most recent PCRL. The
LDM is enforced to send the PCRL to the device because it is regarded as a
compromised one if it refuses to send the recent PCRL, or sends old PCRL.

This approach gives a heavy PCRL management cost to the RI. However, it is
more flexible than the proactive method: although the device is out of its home
network, it can receive a PCRL by the nearest LDM because it can verify the
validity of the PCRL by checking the signature of the RI in PCRL.

6 Meeting the Functional Requirements

It is described how the proposed DRM system meets the functional requirements
in Section 2.3. Additionally, the comparison results between the proposed system
and the previous works is shown in Table 1.

– Local domain licensing: By issuing the proxy certificate to the LDM, the
RI can delegate the local domain licensing rights to the LDM. Since the only
valid LDMs that have valid proxy certificates can exercise the local domain
licensing, the proposed system meets this requirement.

– Contents local sharing: As the LDM can issue a DRO with the proxy
certificate that has been previously issued by the RI, all devices in the same
local domain can acquire the right of rendering the DRM contents. Thus,
all devices in the same local domain can share the DRM content that corre-
sponds to the issued DRO.

– Transferring an RO: If a device D1 wants to transfer a DRO to anther
device D2 in the same local domain, D1 can achieve this by requesting the
transference to the LDM and erasing both the content and corresponding
DRO. After the request, the LDM issues a new DRO and sends both the
DRO and its corresponding content to D2.

– Restricted Sharing: As the LDM can issue a DRO to each device re-
spectively, only the intended devices to play the DRM contents can obtain
the access rights on the contents. Moreover, as the LDM can assign var-
ious access conditions to each DRO, each device has only the access right
that is specified in the DRO issued to it. Thus, this requirement is preserved.
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– Temporal Sharing: As the LDM can limit the validity period of a DRO
and it also can distinguish the member devices in the local domain from the
others, the proposed DRM system provides this requirement.

– Revocation: As mentioned in Section 5, this functionality can be provided
in the proposed system.

Table 1. Functionality comparison results between the proposed system and the pre-
vious systems

Functionality Popsescu [11] OMA DRM [10] Proposed system

Local domain licensing × × ©
Contents local sharing © © ©
Transferring an RO × © ©
Restricted Sharing × × ©
Temporal Sharing × © ©
Revocation © N/A† ©

†As RI manages all local domains in the OMA DRM, the LDM does not exist.

7 Conclusion

In this paper, a new DRM system for local domain management has been pre-
sented in which access control on the contents is enabled by the right delegation
strategy with proxy certificates. Moreover, the system also provides additional
functionalities which are necessary for ordinary scenarios in home networks. Al-
though we applied the delegation strategy to OMA DRM, this strategy can be
applied to any other DRM systems easily.
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Abstract. With the increasing needs for higher security level, biometric sys-
tems have been widely used for many applications. Among biometrics, iris rec-
ognition system has been in the limelight for high security applications. Until 
now, most researches have been focused on iris identification algorithm and iris 
camera system. However, after the recent report of attacking iris recognition 
system by fake iris such as printed, photography and contact lens iris has been 
disclosed, the importance of fake iris detection is much increased. 

So, we propose the new method of detecting fake iris. This research has fol-
lowing three advances compared to previous works. First, to detect fake iris, we 
check both the size change of pupil and the change of iris features in local iris 
area (near pupil boundary) by visible light. Second, to detect the change of local 
iris features, we used multiple wavelet filters having Gabor and Daubechies 
bases. Third, to enhance the detecting accuracy of fake iris, we used a hierar-
chical SVM (Support Vector Machine) based on extracted wavelet features.  

Keywords: Iris Recognition, Fake Iris Detection, multiple wavelet filters, hier-
archical SVM. 

1   Introduction 

Iris recognition system has been in the limelight for high security biometric applica-
tions [1][2][4][7]. Iris is the region which exists between sclera and pupil [1]. Its main 
function is to contract or dilate the pupil in order to adjust the penetrated light amount 
into the retina. Iris patterns are highly detailed and unique textures that almost remain 
unchanged from 6 month of age to death. After the recent report of attacking iris rec-
ognition system by fake iris such as printed, photography and contact lens iris has 
been disclosed, the importance of fake iris detection is much increased [15]. 

Fake iris detection is to detect and defeat a fake (forgery) iris image. In previous 
research, Daugman proposes the method of using FFT (Fast Fourier Transform) in 
order to check the high frequency spectral magnitude in the frequency domain, which 
can be observed distinctly and periodically from the print iris pattern because of the 
characteristics of the periodic dot printing [1][2][16]. However, the high frequency 
component cannot be detected in case that input printed iris image is blurred  
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purposely (by clever attacker) and the fake iris may be accepted as live one, conse-
quently. Another method of fake iris detection was introduced by iris camera manu-
facturer. They use the method of turning on & off illuminator and checking specular 
reflection on a cornea. However, such a method can be easily deceived by using the 
printed iris image with cutting off printed pupil region and seeing through by at-
tacker’s eye, which can make corneal specular reflection [15]. Another research [27] 
proposed the method of using the dilation and contraction of pupil according to envi-
ronment light stimulus. However, such a method cannot detect the fake iris made by 
(semi-transparent) patterned contact lens. That is because the iris region of the contact 
lens is semi-transparent and dilation & contraction is also visible in such case in 
spited of fake iris. 

Another approach using Purkinje image was shown [28], but it cannot detect fake 
iris such as patterned contact lens. Advanced methods using visible lights were intro-
duced [29][30]. However, they used single wavelet filter and local change of iris fea-
tures could not be accurately detected especially in case of fake iris such as patterned 
contact lens. In addition, they used one level SVM for classification of fake and live 
iris image and the classification complexity was too great for SVM to correctly clas-
sify the samples, consequently. 

As another countermeasure, we can consider multimodal biometric system. Multi-
modality means combining several biometric traits such as face and iris recognitions 
[2]. This concept is reported to increase the accuracy of the system in terms of EER as 
well as the resistance to counterfeiting attempts, simply because all traits should be 
spoofed simultaneously. However, total cost and system complexity are inevitably 
much increased due to the combination of more than two biometric systems.  

To overcome such problems, we propose the new method of detecting fake iris 
based on multiple wavelet filters and a hierarchical SVM. 

2   The Proposed Fake Iris Detection Method 

2.1   Proposed Iris Camera and Controlling Illuminator 

In case of the user with glasses, single IR-LED (InfraRed Light Emitting Diode) or 
visible illuminator can make large specular reflection (on glasses surface) which hides 
the whole iris region. In such cases, our system cannot recognize user and detect fake 
iris. So, we use dual illuminators. The IR pass filter is attached in front of iris camera 
lens in order to exclude the external visible light. The dual visible light illuminators 
are only used for making pupil’s size change and in such a case, the IR-LED illumina-
tor of the same side is turned on also, because the iris image only by visible light 
cannot be seen due to the IR pass filter. 

So, our system controls the illuminators synchronized with CCD output signal 
[12]. When a user approaches in the operating range of the iris camera, our iris system 
perceives it. Then, our system controls (On/Off control) the IR-LED and visible light 
illuminator selectively. In our system, the IR-LED illuminator is composed of two 
wavelength of 760 and 880 nm. Each wavelength illuminator (760 or 880 nm) can be 
turned on selectively. After the iris recognition system is started, our system turns on 
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the left illuminator (760 + 880 nm) and performs the operation of capturing focused 
iris image. From that, focused and clear iris image can be captured and iris identifica-
tion is performed. However, in case of users with glasses, the large specular reflection 
can happen on the glasses surface and in this case, the identification may be failed. 
Then, our system turns off the left IR-LED illuminator and turns on the right one and 
the same procedure is iterated. Then, the specular reflection does not happen in iris 
region and iris identification is successful. After that, our system turns on the right 
visible light for about 1 sec and checks the change of pupil’s size for detecting fake 
iris. Detain accounts are shown in following section. 

2.2   Checking the Change of Pupil’s Size by Visible Light 

By checking the change of pupil’s size, we can detect the fake iris such as the 2D/3D 
printed/photograph iris, artificial eye and opaque contact lens. That is because such 
fake iris images do not show the change of pupil’s size by the visible light. However, 
a live iris shows the distinctive change of pupil’s size by visible light as shown in Fig. 
1 [29]. Detail experimental results are shown in section 3.  

To check the change of pupil size, we firstly detect the inner & outer boundary of 
iris by circular edge detection [1]. Then, we calculate the ratio of pupil radius to iris 
radius from iris images captured in case that visible light is off and on (Fig. 1 (a), (b)) 
respectively. If the variation of ratio does not exceed in the predetermined threshold, 
we regard the input iris image as fake one and vice versa. One thing to be considered is 
that the visible light can make dazzling to user’s eye and it becomes severe in case that 
much visible light passes through pupil and approaches the retina. So, we reduce the 
dazzling by making the angle between the line of sight and the illuminating line bigger 
(more than 5 degree), which can lessen the volume of visible light passed through the 
pupil. Also, experimental results showed that with the blue light, the change of pupil’s 
size can be seen most actively and we used the blue light illuminator [30]. 

 

Fig. 1. Example of the change of pupil’s size in case of live iris  
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However, because semi-transparent lens has the complex structure of transparent 
iris area and semi-transparent iris patterns on it, the change of pupil’s size can be 
observed through transparent iris area. So, the fake detection method by checking the 
change of pupil’s size cannot detect such a fake iris [29]. 

So, to overcome such problems, we propose the enhanced method of checking the 
change of iris features in the local iris area (adjacent of pupil boundary as shown in 
Fig. 3 and 4). As shown in Fig. 3, the iris pattern of live iris is dilated and contracted 
in case of the change of pupil’s size and it is like rubber band model [1]. So, the iris 
pattern is not disappeared or appeared. However, the iris pattern of fake iris is not 
dilated and contracted like that of live iris. That is, the some iris pattern is hidden by 
the dilated pupil boundary as shown in Fig. 4 (b) [29][30]. So, we propose the en-
hanced method of checking the iris feature changing in the local iris area (adjacent of 
pupil boundary) and detecting the pattern contact lens. 

In details, iris and pupil boundary was detected by circular edge detection [1]. In 
general, eyelash and eyelid areas are occluded in iris region and they should be re-
moved for detecting the local change of iris features. For upper and lower eyelids are 
also located by eyelid detection mask and parabolic eyelid detection method [1][31]. 
Then, we determine the eyelash candidate region based on detected iris & pupil area 
and detect the eyelash region [32] as shown in Fig. 2(b). After that, the detected circu-
lar iris region is normalized as rectangular shape as shown in Fig. 2(c) [13]. In gen-
eral, each iris image has variations about the length of its iris outer boundary. That is 
because there exists the size variation of iris per user (it is reported that the diameter 
of iris is about 10.7 ~ 13mm). Another is because the captured image size of iris may 
be changed according to Z distance between camera and eye. So, we adjust the length 
of iris outer boundary into 256 pixels by stretching and interpolation as shown in Fig. 
2(c) and it is defined as 256 sectors. Then, the normalized iris image is divided as 8 
tracks as shown in Fig. 2(c) and in each track, the weighted mean of gray level based 
on 1-D Gaussian kernel is calculated per each sector. By using the weighted mean of 
gray level, we can reduce the effect caused by iris segmentation error. Consequently, 
we can obtain the normalized image of 256*8 pixels. 

 

Fig. 2. Normalized Iris Image 



250 K.R. Park et al. 

Then, we apply Daubechies and Gabor wavelet filters in 4 tracks in the local iris 
area (adjacent to pupil boundary) in case that visible light is on. After that, the ex-
tracted iris feature values in 4 tracks are compared those extracted in case that visible 
light is off as shown in Fig. 3(b) and 4(b). The variations of the iris feature values in 
local 4 tracks are inputted to SVM classifier. From that, we determine the live and 
fake iris.  

 

Fig. 3. The local iris region for applying Gabor and Daubechies wavelet (Live Iris) 

 

Fig. 4. The local iris region for applying Gabor and Daubechies wavelet (Fake Iris by Patterned 
Lens) 

2.3   Iris Feature Extraction by Gabor and Daubechies Wavelet Filtering 

As mentioned before, we use Gabor [30] and Daubechies wavelet filtering [29] in 
order to extract the iris feature information. Gabor wavelet was commonly used for 
iris recognition. The optimal kernel size and frequency of Gabor filter were deter-
mined to obtain minimum EER (Equal Error Rate) by testing with our live and fake 
iris DB. EER is the error rate in case that FAR (False Acceptance Rate) is same to 
that of FRR (False Rejection Rate). FAR is the error rate of accepting fake iris as live 
one. FRR is the error rate of rejecting live iris as fake one. After Gabor filtering, we 
can obtain amplitude and phase information. In conventional iris recognition, they 
used the phase information such as iris code bits. However, in our experiment, the 
EER in case of using cosine distance based on amplitude was smaller than that ham-
ming distance based on phase.  
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To obtain more information in local iris area, we also used Daubechies wavelet fil-
ter [29]. Daubechies’s wavelet is reported to have good localization trait and power of 
high texture classification [22]. In addition, Daubechies’s wavelet has the characteris-
tics of the orthogonality and factorization and provides compact support, but is not 
symmetric. The iris region in 4 tracks as shown in Fig. 2 is passed through low-pass 
and high-pass filters to generate the low-low, low-high, high-low and high-high sub-
bands, The decomposition process is recursively applied on the low frequency chan-
nel to obtain the lower resolution subbands. For iris features, we use two features i.e. 
standard deviation and energy from the grey-level histogram of the subbands [19]. In 
this paper, we decompose each iris region into three level Daubechies’s tap-4 filter 
which resulted in 12 subbands from which to extract iris features. In addition, we 
divide the subband images into local windows in order to get robust feature sets 
against shift, translation and noisy environment. Instead of traditional pyramid-
structured wavelet transform, wavelet packet is used as a feature extraction method in 
this paper. Wavelet packet is very effective for texture classification [21] because 
their finite duration provides frequency and spatial locality.  

After extracting the mean and standard deviation by Daubechies wavelet packet, 
we performed the feature normalization, because features with greater values have 
stronger influence in the classification process than that with small values. If we have 
N available data, we denote the ith feature from the jth pattern by xj

i. For the normaliza-
tion, we use the following equation [22]. 

 

 

(1)  
 

 

The mean       and variance         of ith feature are given by 
 
  
 
 

(2) 
 

After normalization, all features have zero mean and unit variance. For the second 
feature, we calculate the energy (the energy from the grey-level histogram) of each 
subband images.  

2.4    Pattern Matching by Hierarchical SVM 

With the transformed iris region in 4 tracks as shown in Fig. 2 and detected features 
(the change of amplitudes) by the Gabor wavelet and (the change of standard devia-
tion and the energy of each subband) by the Daubechies wavelet, we use SVM (Sup-
port Vector Machine) to determine live or fake iris. SVMs have been recently  
proposed as a new technique for solving pattern recognition problems [23][24]. SVMs 
perform pattern recognition between two point classes by finding a decision surface 
determined by certain points of the training set, termed as Support Vectors (SV) and 
SVs are regarded as data which are difficult to be classified among training. At the 
same time, the decision surface found tends to have the maximum distance between 
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two classes. In general, it is reported that its classification performance is superior to 
that of MLP (Multi-Layered Perceptron). Especially, when plenty of positive and 
negative data are not obtained and input data is much noisy, the MLP cannot show the 
reliable classification results. In addition, MLP requires many initial parameter set-
tings and it is usually performed by user’s heuristic experience.  

In this paper, we use a polynomial kernel of degree 5 for SVM in order to solve 
non-linearly separable problem. That is why the dimension of input data is big, so we 
use the polynomials of high degree. In this case, the problem is defined as 2 class 
problem. The first class shows the live iris and the second one does the fake iris. It is 
reported that the other inner products such as RBF, MLP, Splines and B-Splines do 
not affect the generation of support vector [25][29].  

To reduce the complexity of SVM classification, we used following hierarchical 
method. At first, two SVMs are used for the detected features by Gabor and Daube-
chies wavelet, respectively. In general, the output values of SVM are represented as 
continuous one. In our case, the output values close to 0 represent live iris and those 
close to 1 do fake iris. Then, each output value of SVM was inputted to next SVM for 
final classification of live and fake iris. This method using hierarchical SVM can 
make classification problem be simple and consequently it can reduce the classifica-
tion complexity compared to one SVM as shown in Fig.5.  

 

Fig. 5. Hierarchical SVM classification 

Our experimental results comparing the polynomial kernel to MLP for SVM kernel 
show the same results. The C factor affects the generalization of SVM and we use 
10,000 as C factor, which was selected by experimental results. We got 300 live iris 
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image frames (10 frames * 30 persons) and 200 fake iris images (20 frames * 10 fake 
iris) for SVM training and testing.  

3   Experimental Results 

For experiments, live irises were acquired from 30 persons (15 persons without 
glasses and 15 persons with glasses). Each person tried to recognize 10 times and total 
300 iris images were acquired to test our algorithm. The color of pupil for all test data 
is black. According to field test, we could know the normal approaching speed of 
general user to iris camera is about 10 cm/sec (We measured the speed by Polhemus 
sensor [33]). In addition, we acquired total 10 fake iris samples for testing. They were 
composed of 3 samples for 2D printed/photographed iris image on planar or on/with 
convex surface. Also, 3 samples were acquired for 3D artificial eye. And 4 samples 
were for 3D patterned contact lens. With each sample, we tried to 20 times to spoof 
our counterfeit iris detection algorithm.  

Experimental results showed the FAR was 0% (0/200) and the FRR was 0.33 % 
(1/300), but the FRR became 0 % allowing for the second trial. Here, the FAR means 
the error rate of accepting the fake iris as the live one. And the FRR means the error 
rate of rejecting the live iris as the fake one.  

In case of only using Gabor wavelet, FAR was 1% (2/200) and FRR was 0.67% 
(2/300). When using only Daubechies wavelet, FAR was 0.5% (1/200) and FRR was 
0.67% (2/300). According to results, we can know that Daubechies wavelet can show 
the better performance of extracting local iris features than Gabor filtering in case of 
using small region. Especially, we only extract the iris features in 4 tracks(as shown 
in Fig. 2) and the localization accuracy of iris / pupil boundary can affect the per-
formance much more than using whole 8 tracks. Considering such condition, Daube-
chies wavelet shows the better performance than that by Gabor wavelet, because the 
mean value (Eq.(2)) extracted by Daubechies wavelet can reduce the effect by inaccu-
rate localization of iris / pupil boundary. 

In addition, in case of using one SVM for classification instead of hierarchical SVMs, 
the FAR was 0.5% (1/200) and FRR was 0.33% (1/300). From that, we can know the 
proposed method of using multiple wavelet filters and hierarchical SVMs show better 
performance compared to that of using single wavelet or one SVM classifier. 

In case of using MLP for pattern matching instead of SVM, the error rate was in-
creased. The MLP showed the FAR of 1.5 % (3/200) and the FRR of 1 % (3/300). In 
addition, the classification time using SVM was so small as 12 ms in Pentium-III 
866Mhz. 

Comparing to the fake iris detection method by Daugman [1][2][16], Daugman’s 
method showed the FRR was 1 % (=3/300), but the FAR was over 51 % (102/200).  

Though we tested 300 and 200 data for live and fake iris respectively, it is difficult 
to assert that the data set can represent the general characteristics of whole live and 
fake iris. Also, the error may be increased in case of using more data set. So, it is 
required to evaluate the performance by theoretical and we distribute the extracted 
feature value of live and fake iris into feature space. Then, we take mapping the fea-
ture value distributions of live and fake iris into two 2D Gaussian functions. With the 
generated functions and the experimental decision surface by SVM, the FAR/FRR 
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can be calculated by theoretical. Theoretical evaluation showed that the FAR and the 
FRR were 0.001 % and 0.28 %, respectively. 

The total time for fake iris detection is taken 1,633 ms (on average), which in-
cludes 1,051 ms for turning on visible light and 582 ms for the processing. 

In the next experiment, we measure the FAR (the error rate of accepting the fake 
iris as the live one) and FRR (the error rate of rejecting the live iris as the fake one) 
with distance between the input iris and camera. FAR(%) was 0 in all distances. 
FRR(%) was 0.21(at 20mm), 0.2(at 25mm), 0.21(at 30mm), 0.22(at 35mm), 0.2(at 
40mm), 0.19(at 45mm), 0.19(at 50mm), 0.2(at 55mm), 0.19(at 60mm) and 0.2(at 
65mm), respectively  

From that, the FAR and FRR are almost same according to the distance between 
input iris and the iris camera. In the next experiment, we measure the FAR and FRR 
according to the change of environmental lighting condition with fluorescent lamp. 

FAR(%) was 0 in all lighting conditions. FRR(%) was 0.21(at 250 Lux.), 0.19(at 
500 Lux.), 0.2(at 750 Lux.), 0.2(at 1000 Lux.), 0.19(at 1250 Lux.), respectively. From 
that, the FAR and FRR are almost same according to the change of environmental 
lighting. That is because our iris camera has the IR pass filter and the functionality of 
AE (Auto Exposure).  

4   Conclusions 

For higher security level of iris recognition, the importance for detecting fake iris is 
much highlighted recently. In this paper, we propose the new method of checking the 
dilation and contraction of pupil size and the change of iris features by visible light.  

To enhance the performance of our algorithm, we should have more field tests and 
consider more countermeasures against various situations and counterfeit samples in 
future. Also, the method for reducing processing time should be researched for user’s 
convenience. In addition, we plan to research about the changing profile of pupil size 
according to time for more robust fake detection. 
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Abstract. At the ACISP 2006 conference Praveen Gauravaram et al
[2] proposed 3C and 3C+ constructions as enhancements of the Merkle-
Damg̊ard construction of cryptographic hash functions. They conjec-
tured these constructions improved multi-block collision resistance of the
hash functions. In this paper we show that the recently found collision
attack on MD5 can be easily extended to the 3C and 3C+ constructions
based on the MD5 compression function. In fact we show that if an al-
gorithm satisfying some mild assumptions can find multi-block collisions
for the Merkle-Damg̊ard construction then it can be easily modified to
find multi-block collisions for the 3C and 3C+ constructions based on
the same compression function.

Keywords: hash functions, multi-block collision attack, 3C and 3C+
constructions.

1 Introduction

Research in the design and analysis of cryptographic hash functions has been
very active since Wang at al [7] published their first collision search algorithm for
the MD5 hash function. Collision search algorithms for other hash functions have
been discovered, in particular for SHA-0, see [1], [8]. An algorithm for finding
collisions in SHA-1 that is significantly more efficient than the generic birthday
attack was announced in [9].

In the light of these attacks Gauravaram et al [2] have proposed a slight
modification to the Merkle-Damg̊ard construction for an improved protection
against many known attacks on MD based hash functions. Their idea is to add
additional registers that would collect xors of all chaining variables. After the
message is processed the content of additional registers is padded to provide one
more message block and the extra block is used as an input for the last calculation
of the compression function. Thus the original MD construction remains and the
extra security is supposed to be provided by the additional registers, see Figure 1.
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Since the 3C construction contains the original MD contruction, any n-block
internal collision for the 3C construction must be in fact an n-block collision of
the MD construction based on the same compression function. However, because
of the extra use of the compression function at the end of the 3C construction
one cannot claim that an n-block collision for the 3C construction must be also
an n-block collision of the MD construction. To find an n-block collision (where
n ≥ 2) for the 3C construction that is not an n-block collision for the MD
construction based on the same compression function would require to find a
collision in the compression function with different IV’s and possibly different
input blocks.

In this paper we show that the 3C construction does not increase significantly
resistance against multi-block collisions. In fact, under very mild assumptions
we prove that if there is an algorithm that finds n-block collisions for the MD
construction based on a compression function, then one can easily find (2n)-
block collisions for the 3C construction based on the same compression function
and (2n + 1)-block collisions for its modification called 3C+. Our theorem can
be applied in particular to the MD5 compression function.

We also observe that the 2-block collisions for the SHA-0 hash function pub-
lished in [8] are in fact also 2-block collisions for the 3C construction based on
the same collision function.

The paper is organized as follows. In section 2 we discuss the 3C and 3C+
design principles, in section 3 we point out a few important properties of the
recent 2-block collision attacks on MD5. In Section 4 we prove two simple general
theorems how multi-collision attacks on the MD construction can be extended
to multi-collision attacks on the 3C and 3C+ constructions. We conclude the
paper in section 5. In the appendix we present concrete examples of colliding
messages for the 3C and 3C+ constructions based on the compression function
of MD5.

2 Description of 3C and 3C+

The 3C construction is a generic construction designed as an enhancement to
the Merkle-Damg̊ard construction with the idea to increase its resistance against
multi-block collision attacks. One of the main properties of the 3C construction
is that it is as efficient as the standard hash functions when it is instantiated
with the compression functions of any of these hash functions.

The 3C construction accumulates every chaining state of the MD construction
by xoring it to the register already containing xor of all previous chaining states.

Thus if IVi is the chaining variable obtained as the result of i-th iteration of
the compression function (IV0 is the initialization vector), then the value of the
additional accumulation registers (denoted by Ci) after the i-th iteration of the
compression function is C1 = IV1 and

Ci = Ci−1 ⊕ IVi = IV1 ⊕ IV2 ⊕ · · · ⊕ IVi

for i = 2, . . . , L, where L is the number of blocks of the message. The authors
also suggest in their paper [2] that different variants can be obtained for 3C
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Fig. 1. 3C construction of hash function

by replacing the xor function in the accumulation chain by other non-linear
functions.

The 3C+ construction is a different modification of the 3C construction in
which yet another chain Di, i = 1, . . . , L of additional registers accumulating
the values of chaining variables is added. This time D1 = IV0 and

Di = Di−1 ⊕ IVi = IV0 ⊕ IV2 ⊕ · · · ⊕ IVi

for i = 2, . . . , L. Thus
Di = Ci ⊕ IV1 ⊕ IV0

for every i = 2, . . . , L.
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3 Recent Multi-block Collision Attacks

The hash function MD5 uses four 32-bit registers to keep the value of each
chaining variable IVi. We denote them by IVi,0, IVi,1, IVi,2, IVi,3. Thus

IVi = (IVi,0||IVi,1||IVi,2||IVi,3).

Wang et al presented in [7] an algorithm for finding 2-block collisions in the
hash function MD5. Their algorithm works for an arbitrary initialization vector
IV0. If (M1||M2) and (M ′

1||M ′
2) are two colliding messages found by their algo-

rithm then the modular differences of the chaining variables after processing the
first blocks M1 and M ′

1 are
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Δi,0 = IV′
1,0 − IV1,0 = 231

Δi,1 = IV′
1,1 − IV1,1 = 231 + 225

Δi,2 = IV′
1,2 − IV1,2 = 231 + 225

Δi,3 = IV′
1,3 − IV1,3 = 231 + 225, (1)

where

IV1 = f(IV0, M1)
IV′

1 = f(IV0, M
′
1)

and f is the compression function used in MD5.
Wang et al in [7] also presented a set of so-called sufficient conditions for

registers in computation of f(IV, M1) to produce the first blocks of a pair of
colliding messages. These conditions in fact were not sufficient and various au-
thors, e.g. [5] [6] offered their sets of sufficient conditions. For our purposes only
the conditions for IV1 are important and these conditions were the same for all
authors. In fact, we need only four of the sufficient conditions for IV1 and these
four conditions are described in the Table 1.

Table 1. Prescribed conditions for IV1

IV1,0 ........ ........ ........ ........

IV1,1 ......0. ........ ........ ........

IV1,2 .....01. ........ ........ ........

IV1,3 ......0. ........ ........ ........

The exact value of IV1 ⊕ IV′
1 then follows from given modular differences (1)

and prescribed conditions for IV1 in the Table 1. Thus IV1 ⊕ IV′
1 is a constant

independent of the initialization vector IV0 and the first blocks M1 and M ′
1 of

the colliding messages (M1||M2) and (M ′
1||M ′

2).

Table 2. Prescribed δ for IV1

δ1,0 = IV1,0 ⊕ IV′
1,0 10000000 00000000 00000000 00000000

δ1,1 = IV1,1 ⊕ IV′
1,1 10000010 00000000 00000000 00000000

δ1,2 = IV1,2 ⊕ IV′
1,2 10000110 00000000 00000000 00000000

δ1,3 = IV1,3 ⊕ IV′
1,3 10000010 00000000 00000000 00000000

The collision finding algorithm for SHA-0 by Wang et al [8] also finds 2-block
colliding messages but the structure of the messages in this attack is different
than in the case of MD5. The first blocks of the colliding messages (M1||M2) and
(M1||M ′

2) are the same and serve to obtain the chaining variable IV1 satisfying
the conditions sufficient for finding the second blocks M2 and M ′

2. The algorithm
again works for an arbitrary IV0.
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In another paper [9] Wang et al propose an algorithm for finding 2-block
collisions in SHA-1 that is faster than the generic birthday attack. Although no
real collisions in SHA-1 have been found so far, the form of colliding messages
of the proposed attack is in fact the same as in the case of MD5. It means that
the algorithm should work for any IV0 and IV1 ⊕ IV′

1 should be a constant
independent of IV and M1 and M ′

1.

4 Multi-block Collision Attacks on 3C and 3C+

The idea of the attack on the 3C construction when the compression function
is the same as in MD5 is very simple. First, we find 2-block colliding messages
(M1||M2) and (M ′

1||M ′
2) in MD5 using the attack by Wang et al [7]. Then we

take the chaining variable IV2 = IV′
2 as the initialization vector for the second

run of the Wang et al algorithm. In this way we obtain another pair of mes-
sages (M3||M4) and (M ′

3||M ′
4). The 4-block messages (M1||M2||M3||M4) and

(M ′
1||M ′

2||M ′
3||M ′

4) then form a collision for the 3C construction based on the
MD5 compression function. The scheme of the attack and the distribution of
differences are shown on Figure 3.

��f
��f

��f
��f

⊕ ⊕ ⊕

� � � �

� � �
� � � �

�
IV0

� � � �
δ 0 δ 0δ 0 δ 0

δ δ 0 0

0 δ 0

Fig. 3. 4-block internal collision attack on 3C without the final processing

A formal verification of the idea is contained in the following theorem.

Theorem 1. Let H be an MD hash function based on a compression function
f . Suppose that for some n ≥ 2 there exists an algorithm finding n-block colli-
sions for H that works for any initialization vector IV0 and has the property that
IVi ⊕ IV′

i for i = 1, . . . , n is a constant independent of IV0 and the actual col-
liding messages (but can be dependent on i). Then there exists an algorithm that
finds (2n)-block collisions for the 3C construction based on the same compression
function f .

The running time of the algorithm for finding collisions in the 3C construc-
tion is twice the running time of the algorithm for finding collisions in the MD
construction using the same compression function.

Proof. Let (M1||M2|| · · · ||Mn) and (M ′
1||M ′

2|| · · · ||M ′
n) be two colliding mes-

sages obtained by the first run of the algorithm finding collisions in H . Thus
IVn = IV′

n. We use this value as the initialization vector for the second run of
the collision search algorithm for H . We obtain another pair of colliding mes-
sages (Mn+1||Mn+2|| · · · ||Mn+n) and (M ′

n+1||M ′
n+2|| · · · ||M ′

n+n). We denote the
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chaining variables in the second run of the algorithm by IVn+i and IV′
n+i for

i = 1, . . . , n.
By our assumption on the collision search algorithm for H we can write

IVi ⊕ IV′
i = IVn+i ⊕ IV′

n+i

for every i = 1, . . . , n. Thus we obtain

C2n =
2n⊕
i=1

IVi

and

C′
2n =

2n⊕
i=1

IV′
i.

Hence

C2n ⊕ C′
2n =

2n⊕
i=1

IVi ⊕
2n⊕
i=1

IV′
i =

2n⊕
i=1

(IVi ⊕ IV′
i)

=
n⊕

i=1

(IVi ⊕ IV′
i)⊕ (IVn+i ⊕ IV′

n+i)

= 0.

Since IV2n = IV′
2n, the messages (M1|| · · · ||Mn||Mn+1|| · · · ||M2n) and

(M ′
1|| · · · ||M ′

n||M ′
n+1|| · · · ||M ′

2n) form a collision for the 3C construction based
on f . ��

In Section 3 we explained that the Wang et al [7] collision search algorithm for
MD5 satisfied the assumptions of Theorem 1 for n = 2. Thus there exists an
algorithm finding 4-block collisions in the 3C construction based on the MD5
compression function. The fastest implementation of the Wang et al algorithm
known in the moment of writing the paper is by Klima [4] and finds collisions
in MD5 in about 30 seconds in average. Thus at this moment collisions in the
3C construction based on the MD5 compression function can be found within a
minute.

As for the 3C construction based on the SHA-0 compression function there
is no need for running the algorithm twice to obtain a collision. Since the colli-
sion search algorithm for SHA-0 finds colliding messages of the form (M1||M2)
and (M1||M ′

2), we get IV1 = IV′
1 and IV2 = IV′

2, thus C2 = C′
2. Hence the

SHA-0 collisions found by the algorithm are simultaneously collisions for the 3C
construction based on the SHA-0 compression function.

Since the theoretical algorithm for finding collisions in SHA-1 proposed by
Wang et al in [9] also satisfies the assumption of Theorem 1 running the algorithm
twice should again produce a 4-block collision in the 3C construction based on
the SHA-1 compression function.
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Fig. 4. 5-block collision attack on 3C+ without the final processing

The Figure 4 shows how a 5-block collision for the 3C+ construction based on
the MD5 compression function can be found. The only difference with the colli-
sion search algorithm for the 3C construction is that we start with an arbitrary
message block M1, calculate the value of the compression function for the block
with given IV0 to obtain a new initialization vector IV1 and then we run the colli-
sion search algorithm for the 3C construction with the initialization vector IV1.
We obtain messages (M1||M2||M3||M4||M5) and (M1||M ′

2||M ′
3||M ′

4||M ′
5) such

that C5 = C′
5 and IV5 = IV′

5. Since D5 = C5⊕IV1⊕IV0 and D′
5 = C′

5⊕IV1⊕IV0,
we obtain also D5 = D′

5.
From this observation one obtains the following theorem.

Theorem 2. Suppose there exists an algorithm finding k-block collisions in the
3C construction based on a compression function f . Then there exists an algo-
rithm for finding (k + 1)-block collisions in the 3C+ construction based on the
same compression function f .

The running time of the algorithm for the 3C+ construction is equal the run-
ning time of the algorithm for the 3C+ construction plus the running time of
the one calculation of the compression function.

5 Conclusion

In this paper, we have shown how to find collisions for 3C and 3C+ constructions
based on a compression function f provided a collision search algorithm for the
MD construction based on f is known. We also present concrete collisions for
the 3C and 3C+ constructions based on the MD5 compression function.
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264 D. Joščák and J. Tůma
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A Examples of Collisions

Table 3. Collision in 3C invoked with MD5 compression function

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0x4e1a8245 0x5fe0e55d 0xfe3faa53 0x0d8546b3

0x18ccad34 0xac0bae59 0xd59d3352 0x4805693e

0x06342cd5 0x81b41206 0x83c2bea3 0x8fd22557

0xc41a4cd6 0x9e9a4fe1 0x818ae34d 0x1a97e731

N1 0x4e1a8245 0x5fe0e55d 0xfe3faa53 0x0d8546b3

0x98ccad34 0xac0bae59 0xd59d3352 0x4805693e

0x06342cd5 0x81b41206 0x83c2bea3 0x8fd2a557

0xc41a4cd6 0x9e9a4fe1 0x18ae34d 0x1a97e731

IV1 0xadebbbec 0xc85d058e 0xa2672e58 0xb91d144b

IV′
1 0x2debbbec 0x4a5d058e 0x24672e58 0x3b1d144b

IV1 ⊕ IV′
1 0x80000000 0x82000000 0x86000000 0x82000000

M2 0x06faa233 0x1c84a4bf 0xf38ee5f1 0x08deb9af

0x467ad36b 0x4c900712 0xd6a37d26 0x11f6de56

0x8577e045 0x299991d5 0x5940588e 0x3fd25887

0x301fc8fa 0x77dc0e81 0xe8c1a1a7 0x13d51d82

N2 0x06faa233 0x1c84a4bf 0xf38ee5f1 0x08deb9af

0xc67ad36b 0x4c900712 0xd6a37d26 0x11f6de56

0x8577e045 0x299991d5 0x5940588e 0x3fd1d887

0x301fc8fa 0x77dc0e81 0x68c1a1a7 0x13d51d82

IV2 = IV′
2 0xa918ce8d 0xb7ea0df6 0x69bdb806 0x713af4de

M3 0xcd71fe0c 0x58d0f463 0xa9399e1d 0x7db79e98

0x3622a432 0x736cb277 0x011cb460 0x6a04e9b4

0x06332d55 0x23f47e02 0x799ab597 0xd3ba5325

0xb9e866e6 0xde6b9cd3 0xde6cebbb 0x0b4c3783

N3 0xcd71fe0c 0x58d0f463 0xa9399e1d 0x7db79e98

0xb622a432 0x736cb277 0x011cb460 0x6a04e9b4

0x06332d55 0x23f47e02 0x799ab597 0xd3bad325

0xb9e866e6 0xde6b9cd3 0x5e6cebbb 0x0b4c3783

IV3 0x2b30549a 0x089c590a 0x52710661 0x6932f794

IV′
3 0xab30549a 0x8a9c590a 0xd4710661 0xeb32f794

IV3 ⊕ IV′
3 0x80000000 0x82000000 0x86000000 0x82000000

M4 0x96ded638 0x4c1be33a 0xd46e6a5f 0xdbc8da73

0x473af92b 0x4d0da98e 0x56dd6d3e 0xd19e7bd1

0x53f857cd 0x4c25f191 0x918be4da 0xc09e206c

0x320b28d4 0xcc6c0e7a 0x68515c76 0x57840834

N4 0x96ded638 0x4c1be33a 0xd46e6a5f 0xdbc8da73

0xc73af92b 0x4d0da98e 0x56dd6d3e 0xd19e7bd1

0x53f857cd 0x4c25f191 0x918be4da 0xc09da06c

0x320b28d4 0xcc6c0e7a 0xe8515c76 0x57840834

IV4 = IV′
4 0x6a1a021a 0xc81fe980 0x88e1db5b 0x512e7c88



266 D. Joščák and J. Tůma

Table 4. Collision in 3C+ invoked with MD5 compression function

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0x0634add5 0x4074c002 0x7baaf717 0x0f522d75

0xbf6ac0ec 0xa4885903 0x7349e78b 0x2aad1b45

0x281dfb7e 0x173e6c0c 0xab79fc54 0x39453670

0x44fb372b 0x4d5259c8 0xf7ad2d48 0xd1254b51

N1 0x0634add5 0x4074c002 0x7baaf717 0x0f522d75

0xbf6ac0ec 0xa4885903 0x7349e78b 0x2aad1b45

0x281dfb7e 0x173e6c0c 0xab79fc54 0x39453670

0x44fb372b 0x4d5259c8 0xf7ad2d48 0xd1254b51

IV1 = IV′
1 0xd3f4b63c 0x595f4645 0xa890d3d0 0x9cc907db

M2 0xa72fc176 0x64b7a050 0xe266ae7a 0x1b21009e

0xfac1ee4c 0x9e588e8e 0x076d346d 0x805529b7

0x0633ad55 0x02342602 0x83b4ba0b 0x56d1d924

0x82d9651a 0xba9c8de6 0xebbbe37e 0xb78c63d5

N2 0xa72fc176 0x64b7a050 0xe266ae7a 0x1b21009e

0x7ac1ee4c 0x9e588e8e 0x076d346d 0x805529b7

0x0633ad55 0x02342602 0x83b4ba0b 0x56d25924

0x82d9651a 0xba9c8de6 0x6bbbe37e 0xb78c63d5

IV2 0xead1c69e 0xd19e34c2 0xca2e528e 0xb1790589

IV′
2 0x6ad1c69e 0x539e34c2 0x4c2e528e 0x33790589

IV2 ⊕ IV′
2 0x80000000 0x82000000 0x86000000 0x82000000

M3 0x6dbb34a0 0x9c1b815b 0x7ceb8ffd 0x1502296c

0x467d585b 0x4d0d8038 0xc6db2d16 0x00d11ad5

0xd2b2eeed 0x4a04145b 0x2f79d4aa 0x00be08a0

0xf2e830f3 0x10bc0a85 0xe9019cb8 0x4fd512a2

N3 0x6dbb34a0 0x9c1b815b 0x7ceb8ffd 0x1502296c

0xc67d585b 0x4d0d8038 0xc6db2d16 0x00d11ad5

0xd2b2eeed 0x4a04145b 0x2f79d4aa 0x00bd88a0

0xf2e830f3 0x10bc0a85 0x69019cb8 0x4fd512a2

IV3 = IV′
3 0x46321911 0x9d317bd2 0xfde6d50e 0xeb2170d8

M4 0x122cdc12 0x5f60de22 0xedac78fd 0xf506f854

0x2b85436b 0x3c980908 0xda4c144d 0x03344bbe

0x0634ad55 0x0113f402 0x80aab777 0x13888f67

0xadea26f7 0x623cc142 0x1192759e 0x0e74317c

N4 0x122cdc12 0x5f60de22 0xedac78fd 0xf506f854

0xab85436b 0x3c980908 0xda4c144d 0x03344bbe

0x0634ad55 0x0113f402 0x80aab777 0x13890f67

0xadea26f7 0x623cc142 0x9192759e 0x0e74317c

IV4 0x754b85c2 0x45386ef2 0x3adad7b7 0x61523316

IV′
4 0xf54b85c2 0xc7386ef2 0xbcdad7b7 0xe3523316

IV4 ⊕ IV′
4 0x80000000 0x82000000 0x86000000 0x82000000

M5 0x65171431 0x2615affc 0x2a2519e7 0xe2e99ce8

0x44bcf42b 0x4c4def0e 0x47aadd22 0x127d7d56

0x62bf776d 0x6cc9d58b 0x597058d6 0x602a5867

0x3e2bc8ce 0xb3ec1267 0x68716155 0x17a50429

N5 0x65171431 0x2615affc 0x2a2519e7 0xe2e99ce8

0xc4bcf42b 0x4c4def0e 0x47aadd22 0x127d7d56

0x62bf776d 0x6cc9d58b 0x597058d6 0x6029d867

0x3e2bc8ce 0xb3ec1267 0xe8716155 0x17a50429

IV5 = IV′
5 0x1453b7b0 0x803e8aee 0xfd85765e 0x176ca5d9
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Abstract. T-functions are a useful new tool to design symmetric-key
algorithms, introduced by Klimov and Shamir in 2002. They have already
been used to build stream ciphers and new applications for block ciphers
and hash functions have been recently suggested.

In this paper, we analyze the security of several possible constructions
of hash functions, based on T-functions. We show that most natural ideas
are insecure. As an application, we describe a practical preimage attack
against the dedicated hash function used in the MySQL password-based
authentication mechanisms.
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1 Introduction

Following many recent cryptanalysis results against popular algorithms like
MD5 [23] or SHA-1 [22], the design of secure hash functions is now in ques-
tion. Some issues have been raised about the theoretical security of the Merkle-
Damg̊ard mode of operation [2,4,5] but the heart of the problem seems to be the
design of “good” compression functions. The typical design method is to use a
block cipher in the Davies-Meyer mode, however the large block length neces-
sary to prevent birthday attacks often requires the use of ad hoc block ciphers,
instead of relying on AES for instance.

An interesting new research direction is to find new paradigms to build com-
pression functions. As an example, one can mention SMASH, a recent attempt
by Knudsen [10] which was later broken by Pramstaller et al [20], or the Butter-
fly transforms [18]. Another interesting idea consists in building a compres-
sion function which relies on another primitive than a block cipher.
Some hash functions already rely on number-theoretic assumptions, however it
might also be interesting to find constructions that rely on simple and efficient
symmetric-key primitives.

In this paper, we investigate the security of hash functions based on T-
functions. Our analysis is motivated by the observation that many popular func-
tions (like MD5 and SHA-1) are close to a T-function (only the circular rotations
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break the triangular structure). Also, we observed that some ad hoc designs (like
the MySQL dedicated hash function, for instance) were based on T-functions.

First, we investigate several “natural” constructions of T-function-based hash
functions that a designer could consider, and we show why they are insecure.
This analysis is actually quite simple, but we show that it has a devastating
effect when taking the concrete example of the MySQL dedicated hash function,
whose compression function is based on a T-function. We describe a practical
preimage attack against this hash function, which allows to retrieve instantly
the user’s passwords.

2 Possible Use of T-Functions in Hash Functions

2.1 Definition of T-Functions

T-functions are a new family of primitives that has recently emerged, especially
for stream ciphers design. Initially introduced by Klimov and Shamir in 2002 [7],
a T-function maps an n-bit input to an n-bit output, where the i-th bit of the
output depends only on the i Least Significant Bits (LSB) of the input. T actually
stands for “Triangular”, as illustrated in Figure 1.

INPUT OUTPUT
T−function

ii

1

Fig. 1. General structure of a T-function

More precisely, let x = (x1, . . . , xn) be the input of the T-function F , and
y = (y1, . . . , yn) its output. The definition implies that yi must be computable
only from (x1, . . . , xi). This idea is quite natural, since most usual software oper-
ations are T-functions, like boolean operations (IF, AND, XOR) and arithmetic
operations (+, *) taken modulo a power of 2. Besides, T-functions can be com-
posed, while still preserving the Triangular property. Also, provided n is equal
to the word size of the underlying processor, implementation of such T-functions
in software can be made very efficient.

For practical purpose, it is customary to use a multi-word T-function. It
is a mapping applied to m words of n bits, which has the property that the i-th
bits of each output depends only on the i LSB’s of each input. Multi-word T-
functions fit better on 32-bit or 64-bit architectures than single-word T-functions.
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There has also been some work on suitable properties for T-functions in stream
ciphers (like invertibility and cycle length) [8]. More recently, it was suggested
to use T-functions to build MDS nonlinear mapping in block ciphers, and self-
synchronizing hash functions [9].

2.2 Compression Functions

Typically, a hash function H maps an arbitrary input M ∈ {0, 1}∗ to a fixed-
size output H(M) ∈ {0, 1}n. A mode of operation is often provided, in order
to handle arbitrary inputs and to extend the domain of a smaller function, also
called compression function and noted h, which works on fixed-size inputs.
Figure 2 summarizes this construction method, also known as Merkle-Damg̊ard
construction.
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M1

h h
IV

M2

s1

ML

sL−1 sL
Transform

h

Fig. 2. Description of the hash function H

While there are theoretical background for using it, the final transform is often
omitted, and the last chaining variable sL becomes the hash of the message M .
IV is a n-bit constant, which is part of the specifications of the hash function,
while the variables (M1 . . . ML) (of length t bits each) are the “chunks” of the
message. A padding may need to be specified to avoir some attacks and to handle
messages whose length is not a multiple of t.

To summarize, the compression function h maps an input of length t + n bits
to an output of n bits. A natural idea is to build a compression function
based on a T-function F . By definition, F has the same input and output
domain, so one needs to find a way to decrease the output length : there are
several natural ideas to achieve it.

2.3 The Truncation Method

In stream cipher designs, T-functions are thought of as mappings such that
knowing the Most Significant Bits (MSB) of the output reveals little information
about the input. Roughly, the MSB’s are used as the keystream in a stream cipher
design. This was the original idea by Klimov and Shamir [8,13], although more
complex constructions have been preferred in practice [3,11,14].
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In the context of compression function design, the natural idea to decrease
the output size of the T-function is therefore to truncate the output’s LSB. Call
F the T-Function and t + n its domain length. The t LSB’s of the output of F
are truncated in order to build the compression function h. The output size of
h is indeed t + n− t = n bits, as needed (also see Figure 3).

T−function

INPUT OUTPUT

truncation of t bits

Fig. 3. The truncation method

T−function

INPUT WORDS OUTPUT WORDS

Fig. 4. The reduction method

This idea easily extends to multi-word T-functions. For instance, suppose
that t + n is a multiple of 32. Then F is a multi-word T-function operating on
l = (t + n)/32 words of 32 bits each. To build a compression function h, the t/l
LSB’s of each output word would be truncated.

2.4 The Reduction Method

Another natural solution is to reduce the number of output words of a (multi-
word) T-function. Therefore F becomes a mapping which has different input
and output domain. For instance, if both t and n are multiples of 32, one could
design a Triangular mapping which takes an input of (t + n)/32 words and
outputs n/32 words only. Such a design can be built from scratch, or from a
pre-existing T-function1 (also see Figure 4).

A good example of this method is the MySQL dedicated hash function, where
the input of h is of length 4 words (3 words from the chaining variable, and 1
word which is a chunk of the password) and the output length is 3 words. All
operations in h are Triangular, therefore h itself is a T-function (see Section 5.2
for more details).

3 Analysis of the “Natural” Solutions

It is quite clear that all the solutions proposed above do not present a “pseudo-
random” behavior. For instance, flipping only the most significant bit(s) of the
input will modify only the most significant bit(s) of the output. However, it
does not immediately extend to collision or preimage attacks. In this Section,

1 In this case, it comes down to the truncation method described in Section 2.3, where
entire output words are removed, instead of the LSB’s of each word.
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we exploit the structure of T-functions to propose generic collision and preimage
attacks against all the “natural” constructions proposed in Section 2.

3.1 Attacking the Truncation Method

Let h be a compression function built from the truncation of a l-word T-function
F . The input x of F is composed by l-bit values noted x = (x1 . . . x(t+n)/l) and
its output y is composed by l-bit values noted y = (y1 . . . y(t+n)/l). By definition,

h(x) = y′ = (y′
1 . . . y′

n/l) = (y(t/l)+1 . . . y(t+n)/l)

We describe a pseudo-preimage attack against h, i.e. for a random input
challenge defining an output y′ of h, we find an arbitrary input x such that
h(x) = y′. It is called “pseudo-preimage” attack because there is no constraint
on the n input bits which correspond to the chaining variable. Therefore, they
are not necessarily equal to the IV of the hash function (see Figure 2). However,
it is well-known that such attacks can be extended to preimage attacks against
the whole hash function, using a meet-in-the-middle approach [12].

An attacker can compute a pseudo-preimage, layer by layer. The sketch of
our attack against the truncation method is the following :

– Fix an arbitrary value for x1, x2, . . . , xt/l and fix pos = (t/l) + 1.
– For all the 2l candidates of xpos, compute ypos (possible since F is triangular).
– Choose arbitrarily a candidate xpos such that ypos = y′

pos−(t/l), increment
pos and continue to the next layer.

– If no such candidate exists, return to the first step.
– If pos = (t+n)/l, the input x = (x1, . . . , x(t+n)/l) clearly satisfies h(x) = y′.

Since there are 2l possible choices for xpos, it is likely that one of the candidates
matches the word (pos− (t/l)) of the challenge, at each step. Otherwise we draw
at random another value of x1, x2, . . . , xt/l until a solution is eventually found.
More precisely, we have a probability of P to find a valid candidate at one precise
step, where:

P =1−
number of mappings where y′

pos−(t/l) does not appear

total number of mappings
= 1−

(
2l − 1

2l

)2l

.

Finally, this algorithm costs about n
l ×2l×P−n

l computation steps to find
a pseudo-preimage while the expected strength is 2n. We show in Appendix A
that P−1/l <

√
2, which validates our attack since P−1/l < 2.

Note that this attack can be utilized to find a pseudo-collision, i.e. two different
inputs x, x′ such that h(x) = h(x′). By choosing arbitrarily an input x and
running the previously described attack for the challenge y = h(x), we eventually
get an input x′ such that h(x) = h(x′) = y. The complexity of this attack is the
same as the preimage one while the expected strength is 2

n
2 , and we show in

Appendix A that P−1/l <
√

2.
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3.2 Attacking the Reduction Method

The reduction methods suffer from the same weaknesses as the truncation
method, as an attacker can compute a preimage layer by layer. Suppose that
the input is composed of l words and the output of l′ < l words.

First, for all possible least significant bits of the input (2l candidates), he
computes the least significant bits of the output and searches for a match with
the bits from the challenge. If a solution is found, he jumps to the next layer
(i.e. the second least significant bits), etc . . . . Since l > l′, it is very likely that
a solution exists at each step.

With the same reasoning as for the truncation method, we can conclude that
this algorithm costs about n

l′ × 2l′ × P− n
l′ computation steps to find a

pseudo-preimage, where:

P = 1−
(

2l′ − 1
2l′

)2l

.

Using the proof in Appendix A, we have P−1/l′ < 2. A good illustration is
given in the next Sections with the MySQL dedicated hash function, where l = 4
and l′ = 3.

This attack also leads to a pseudo-collision one, in the same manner as for the
truncation method. The complexity of this attack is the same as the preimage
one, and P−1/l <

√
2 is a direct consequence of the proof in Appendix A .

3.3 Some Possible Strengthening

All these attacks result from the following fact : due to their triangular structure,
T-functions allow to attack some parts independently. More generally, functions
for which some parts can be separated independently are bad candidates for
hash functions. For example, this problem is present when one wants to build a
multiple-length hash function from simple-length primitives [19]. Naturally, one
can think of some possible strengthening in order to thwart such attacks :

– the feed-forward consists in XORing some input bits to the output of the
compression function. It is typically used to break the invertibility of block
cipher-based compression functions. The feed-forward is also triangular, so
it would not help here.

– the folded feed-forward consists in exchanging the least and most signifi-
cant part of the input before the feed-forward. Such folding has already been
used in stream ciphers design to strengthen the output function [6]. Such so-
lutions would require a separate analysis, but we believe trade-off attacks
could allow to invert the compression function for less than 2n work.

– tweaking the T-functions to make the most significant bits very difficult
to invert, when the least significant bits are hidden. However, this requires
major changes to T-function designs.
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3.4 Summary

To summarize, most “natural” constructions based on T-function turn out to be
weak regarding collision and preimage attacks. The attacks we described are very
simple, but they are generic : they are direct consequences of the structure of T-
functions. Despite this simplicity, the impact in practice can be devastating. As
an illustration, we analyze the dedicated hash function used in MySQL password-
based authentication mechanisms, whose compression function is triangular.

4 Application to (Old) MySQL Authentication
Mechanisms

MySQL is a very popular database open source technology [16]. It was initially
conceived (and is still maintained today) by a Swedish company called MySQL
AB. Among many other things, MySQL contains some security mechanisms.
They are used to authenticate a client that wishes to connect to the database
server. The client and the server initially share a password and the authen-
tication is a challenge-response, based on the password only, without the use
of any public-key cryptography. The server generates a fresh random challenge,
generally called the salt and sends it over to the client. Upon reception, the
client builds an authentication message (aka scrambled message) by mixing the
salt and the password and sends its response to the server. Finally, the server
recomputes the scrambled message, and compares this result with what he re-
ceived from the client. Depending on this verification, he accepts or rejects the
connection. This protocol is represented in Figure 5.

CLIENT

salt

password password

MySQL
SERVER

salt = generate_random()

message = F(salt,password)

Verify(message,salt,password)

message

Fig. 5. Password-based Challenge-response Authentication in MySQL

Actually, the real construction is slightly different : indeed, one wants to avoid
the loss of all user’s passwords in case of intrusion on the server. Therefore, the
server stores only a hash of each user’s password, instead of the password itself.
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A hash function H is specified for that purpose in the MySQL specifications.
The function F is applied to H(password) instead of the actual password, so
what the client and the server both compute is actually :

message = F (salt, H(password))

As we can see, all an attacker needs to know in order to impersonate the legiti-
mate client is the value of H(password).

Until version 3.23, MySQL used a dedicated hash function H and a dedi-
cated scrambling function F . H is a usual iterated construction based on a
compression function, while F is a pseudo-random number generator, whose
seed is derived from the salt and H(password). The last version using these
old mechanisms (3.23.58) was released in September, 2003. Since then, new ver-
sions have been developed (4.0 and above), for which they were replaced by
constructions based on the popular hash function SHA-1 [17]. Still, the old se-
curity algorithms continue to be implemented, to ensure compatibility with old
versions. The description of H and F can be obtained on the MySQL web-
site [15], by downloading the source code (in particular, see the password.c
file). A good informal description of the protocol can also be found at the ad-
dress http://www.redferni.uklinux.net/mysql/.

The old MySQL password algorithms (those used in versions 3.23 and earlier)
have already been studied in 2002 [1]. An attack against the F function was pro-
posed, which allows an attacker to recover H(password), provided he intercepts
about 10 pairs (salt, message). This is sufficient for practical purpose, which
motivated the introduction of new security algorithms. However, studying the
dedicated hash function remains an open research topic.

In this paper, we propose a preimage attack against this hash function. Al-
though this was not apparently a design criteria, we observe that its compression
function is based on a T-function and we apply the attacks described in Section 3.
First, we describe the MySQL authentication mechanisms. Then we show an at-
tack that finds preimages for the compression function, and finally we perform a
meet-in-the-middle attack against the full hash function. This allows to mount a
square-root dictionary attack : a password with entropy of n bits is recovered
with 2n/2 computation steps. This attack has been implemented in practice on
a standard PC and takes a few seconds, independently of the password length :
if the password is too long, an ”equivalent” password (i.e. leading to the same
hash value) will be retrieved instead.

5 Description of the Mechanisms

5.1 The Old MySQL Hash Function

The old MySQL hash function H takes an input of arbitrary size and outputs
two words of 30 bits each. Therefore it is a mapping

H : {0, 1}∗ −→ {0, 1}60
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In practice, the input is a password which is split into a sequence of n bytes. No
padding is specified, so the input length must be a multiple of 8 bits. H is an
iterated hash function. At the i-th iteration, it updates a chaining variable si of
size 96 bits (the concatenation of 3 words of 32 bits which are called ni

1, ni
2 and

addi: si = ni
1||ni

2||addi ), by

si = h(si−1, ci)

As usual, h is called the compression function and ci is the i-th byte of the
password. The initial value s0 consists of the following constants :

n0
1 = 1345345333

n0
2 = 305419889

add0 = 7

When all password bytes have been used, after k iteration of the compression
function, the final value of the state is truncated from 96 to 60 bits, by keeping
only the 30 least significant bits of nk

1 and nk
2 . These 60 bits constitute the hash

of the password. Also refer to Figure 2 for a description of H , where the final
transform is a truncation from 96 to 60 bits.

Due to the limited output size, H can offer at most a security of 230 regarding
collision attacks and 260 regarding preimage attacks.

5.2 The Compression Function

The compression function h is a mapping

h : {0, 1}96 × {0, 1}8 −→ {0, 1}96

which has the property to combine only triangular operations. More precisely, it
mixes basic arithmetic and logical operations :

ni
1 = ni−1

1 ⊕ (((ni−1
1 ∧ 63) + addi−1) · ci + (ni−1

1 ) 8))
ni

2 = (ni−1
2 ) 8)⊕ ni−1

1

addi = addi−1 + ci

where the additions are taken modulo 232 and ) 8 denotes a shift by 8 bits to
the left2.

Looking at the chaining variable and the password chunk ci as input words,
this compression function follows exactly the reduction method introduced in
Section 2.4, with input domain of 4 words and output domain of 3 words. There
is a slight technical difference here, since the chaining variable words have length
32 bits, while the password chunk has length of 8 bits only. But this does not
change fundamentally the analysis.

2 This is equivalent to a multiplication by 28 = 256, modulo 232.
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5.3 The Scrambling Function

The scrambling function F operates on a random value salt (which is a sequence
of bytes, like the password) and on the hash of the password H(password), by

message = F (salt, H(password))

Actually, F can be seen as a Pseudo-Random Number Generator (PRNG) : its
seed is derived by :

seed = H(salt)⊕H(password)

The scrambled message is then generated from several consecutive output bits
of the PRNG. More precisely, seed is represented as two words of 30 bits each :
seed1 and seed2. The update works as follows :

seed′1 = (3 · seed1 + seed2) mod (230 − 1)
seed′2 = (seed1 + seed2 + 33) mod (230 − 1)

After each update, a pseudo-random output is extracted by :

output =
⌊

seed′1
34638622

⌋
∈ {0, . . . , 30}

This output is added to 64 and mapped to a printable character using the ASCII
table. This operation is performed ls times where ls is the length (in bytes) of
the salt. The typical length is ls = 8, although other length (up to ls = 20)
are handled by the protocol. A final masking is applied : the random number
generator is run one extra round, and the resulting output byte (called mask)
is XORed to every byte of the message.

The result is the authentication message which is sent by the client to the
MySQL server. Depending on the version of MySQL, two security protocols
(protocols 9 and 10) are possible. If protocol 9 is used, the scrambling func-
tion is slightly weakened : the entropy of the initial state is reduced and the
final masking is removed. In this paper, we focus only on protocol 10, i.e. the
”full” scrambling function, and we assume that ls = 8. The attack would easily
translate to situations where ls > 8 or where the ”weakened” version is used.

5.4 The New Construction

In more recent MySQL versions (4.0 and above), all these dedicated mechanisms
have been replaced by a new scrambling function F (salt, password) based on
SHA-1 [17].

v = SHA-1(SHA-1(password))
F (salt, password) = v ⊕ SHA-1(salt||v)

where || denotes the concatenation. The security of this new mechanism relies on
the security of SHA-1. New results have recently been published [22], however
they concern collision resistance, while the problem here is essentially preimage
resistance.
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5.5 The Cryptanalysis Scenario

First, we suppose that an attacker wants to attack the old authentication pro-
tocol of MySQL. He listens to communications between the client and the
server, and learns pairs (salt, message). His first goal is to retrieve the value
of H(password). This information is sufficient to later impersonate the legiti-
mate client. We call it the unscrambling attack. It basically comes down to
breaking the PRNG, given several output bits. Such an attack was already pro-
posed in [1]. We further analyze the security of the MySQL scrambling function
in Appendix B.

If for some reason, the attacker needs to find the actual client’s password,
he needs to break the one-wayness of H , i.e. to retrieve password from
H(password). This scenario can arise after the unscrambling attack, or in case
of intrusion on the database server : in this case, the hash of each user’s password
is compromised.

6 Preimage Attacks Against the MySQL Dedicated Hash
Function

In this section, we show how to break the one-wayness of the MySQL dedi-
cated hash function. We are given a hash of the user password and retrieve the
password almost instantly. This attack has been implemented on a regular PC
(Pentium IV, 2.5 Ghz with 2Gb of RAM), and takes negligible amount of time.

We first show how to compute pseudo-preimage against the compression func-
tion, following the framework given in Section 3. Then we perform a meet-in-
the-middle attack against the whole hash function.

6.1 Breaking the Compression Function

The compression function h is described by the following equations :

ni
1 = ni−1

1 ⊕ (((ni−1
1 ∧ 63) + addi−1) · ci + (ni−1

1 ) 8))
ni

2 = (ni−1
2 ) 8)⊕ ni−1

1

addi = addi−1 + ci

where the incoming chaining value (ni−1
1 , ni−1

2 , addi−1) and the output (ni
1, n

i
2,

addi) are composed with 3 words of length 32 bits and ci is the password char-
acter to be hashed.

This compression function follows the reduction method, introduced in Sec-
tion 2.4. We apply the pseudo-preimage attack described in Section 3.2 : the
general idea is to proceed layer by layer. Actually, we can directly write the
method that allows to compute all preimages corresponding to a given challenge,
noted (n′

1, n
′
2, add′). Each preimage is a pair {c, (n1, n2, add)} that maps to the
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challenge through h. We start by enumerating all possible password characters
c. Then, we do the following for each c :

– First, observe that add = add′ − c
– Guess the 6 LSB of n1. We get that

n1 ∧ 255 = (n′
1 ∧ 255)⊕ (c · ((n1 ∧ 63) + add))

So we obtain the 8 LSB of n1. This must match the previous guess on the 6
LSB, otherwise we reject it. In general, only 1 guess out of 26 = 64 remains
at this point.

– The value of x = ((n1 ∧ 63) + add) · c is known and :

n1 = n′
1 ⊕ (x + (n1 ) 8))

which allows to derive the value of n1 byte by byte
– Finally, we derive n2 by :

n2 ) 8 = n′
2 ⊕ n1

There is no way to determine the 8 MSB of n2 since they are not used in the
compression function. This inversion of h has been implemented on a regular
PC and takes a negligible amount of time. In general, the solution obtained is
unique, for each guess on c.

6.2 Application to the Full Hash: Meet-in-the-Middle

When it is possible to compute preimages for the compression function, it is
well known that a meet-in-the-middle attack allows to extend the attack to the
full hash (see [21] for instance). Our basic assumption is that the password is
an unknown vector of 8 bytes, i.e. its entropy is 64 bits. We observe that if
the password is longer, it is very likely that we will found an alternative 8-byte
password that maps to the correct hash, since the output size is only 60 bits.
Then, the framework of the attack is the following :

– Split the search space in two halves (of 4 characters each for instance)
– Start from the initial chaining value, and apply 4 times the compression

function, for each possible sequence of 4 characters.
– Start from the password hash and invert 4 times the compression function

with the previously explained technique, for each possible sequence of 4
characters.

– Find a match between the forward computation and the backward compu-
tation.

The complexity of this attack is only (28)4 = 232 in time and memory. This
represents a square-root dictionnary attack. Indeed, the complexity is only
the square-root of the size of the search space.
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6.3 Analysis

We implemented the previous attack, but several modifications were introduced
compared to the theoretical analysis :

– First, we did not consider a character as an 8-bit unknown, but we restricted
our analysis to a subset of about 100 characters (alphanumerical, plus some
usual symbols) that are easily rechable from the keyboard.

– Secondly, instead of splitting the 8 characters in 4 + 4, we split it into 3 + 5.
We stored in memory the candidates for the backward computation (about
1003 candidates), then we sorted this list (using quick-sort). Finally, we enu-
merated the list of 1005 “forward candidates”. This is a more reasonable
trade-off, since memory requirements are more difficult to satisfy in imple-
mentations than time requirements.

– Finally, there is no use in identifying the candidates using the whole n2 value,
since its MSB are not used by the compression function. As a result, we
slightly decrease the memory requirements, but we also increase the number
of matches we obtain.

Typically, our implementation takes less than one second to retrieve a pass-
word randomly chosen by the user. If the password has length > 8 characters,
we generally find many alternative candidates.

To give an example, if we pick the password “MySQL123”. The hash of
the password is (nk

1 ∧ K = 0x1b03947c, nk
2 ∧ K = 0x1d6d177b), with K =

0x3fffffff. Exploring all passwords of length up to 8, we found two solutions
that map to this hash : “MySQL123” and “RGp0mA23”. The second candidate
is an alternative password that could be later substituted to the original one.

7 Conclusion

We considered several natural solutions to build hash functions based on T-
functions, a new and popular primitive in symetric-key designs. Following re-
cent cryptanalysis results, new ideas might be necessary for constructing hash
functions, but our results show that the “natural” solutions based on T-
functions fail to provide a satisfactory level of security. While the attacks
we describe are very simple, their practical effect can be devastating.

As an illustration, we focused on the old MySQL password-based authentica-
tion mechanisms. Until 2003, they included a dedicated hash function for which
no analysis had yet been published. We observed that its compression function is
based on a T-function and therefore we apply our generic analysis. We described
a square-root dictionnary attack to find preimages. It retrieves the user’s pass-
word (or an equivalent one if the password is too long from a hash value, in
less than a second). These results raise some interesting perspectives about the
design of T-function-based hash functions.
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A Complexity Analysis

We want to show that P−1/l <
√

2, with P = 1−
(

2l−1
2l

)2l

and l ≥ 1.

First, we note f(x) = 2x/2−1
2x/2 and g(x) =

(
2x−1
2x

)2x

. With x ≥ 1, both functions
are increasing and if x −→ +∞, we have:

f(x) −→ 1
g(x) −→ 1

e

Since f(1) > g(1) and f(2) > 1
e , we conclude that 2l/2−1

2l/2 >
(

2l−1
2l

)2l

, with l ≥ 1.
Thus we have:

2l/2−1
2l/2 >

(
2l−1
2l

)2l

=⇒ 2l/2 − 1 > 2l/2 ·
(

2l−1
2l

)2l

=⇒ 1 < 2l/2 · (1 −
(

2l−1
2l

)2l

)

=⇒ 1 < 2l/2 · P
=⇒ P−1/l <

√
2.
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B Unscrambling

Since the scrambling function is a PRNG, the situation here is close to the
cryptanalysis of a stream cipher, although the number of available output
bits from the PRNG is very limited here. An analysis of the PRNG was already
given in [1], which works well in practice. In this section, we propose a more
systematic approach to unscramble.

The scrambled message is supposed to have length 8 bytes, and is noted
m = (m0, . . . , m7). The intermediate values of the state are noted (seedi

1, seed
i
2)

for i = 1 . . . 8. If we retrieve the initial state, we obtain H(password) by simply
XORing H(salt). Unfortunately the problem is under-defined : the initial seed
is 60 bits long, while the scrambled message takes only 319 possible values. So,
in theory, there are :

260

319
* 215.41

solutions. Several pairs (salt, message) are therefore necessary to determine
uniquely H(password).

B.1 Unmasking

The scrambled message m is built from 9 consecutive outputs that we note
O0, . . . , O8. We have mi = Oi ⊕ O8 for i ∈ {0, . . . , 7}. We first want to find O8

in order to unmask the real PRNG outputs. We use an important flaw in the
underlying PRNG, i.e. the fact that all output sequences are not equally
likely. To observe this phenomenon, we look at the state update equations :

seedt+1
1 = (3 · seedt

1 + seedt
2) mod (230 − 1)

seedt+1
2 = (seedt+1

1 + seedt
2 + 33) mod (230 − 1)

We focus on the interval where seed1 and seed2 lie modulo 34638622, and
define :

N t
1 =

⌊
seedt

1

34638622

⌋
and N t

2 =
⌊

seedt
2

34638622

⌋
which are integers in the interval [0, 30]. Knowledge of N1 and N2 before the
update allows to predict with good probability their value after the update.
Indeed, :

3 ·N t
1 + N t

2 ≤
3 · seedt

1 + seedt
2

34638622
< 3 ·N t

1 + N t
2 + 4

Besides

N t+1
1 =

⌊
(3 · seedt

1 + seedt
2) mod 230 − 1

34638622

⌋
=

⌊
3 · seedt

1 + seedt
2

34638622
mod 31

⌋
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So we have only 4 candidates, i.e. N t+1
1 = (3·N t

1+N t
2+i) mod 31, with i = 0, 1, 2

or 3, instead of 31 candidates. Similarly, we can identify a reduced number of
candidates for N t+1

2 , i.e. (3 ·N t
1 + 2 ·N t

2 + i) mod 31, with i = 0, 1, 2, 3 or 4.
The same analysis can be recursively applied to all iterations of h. Since we

know the value of Oi = N i
1 we can eliminate an important fraction of the initial

guesses, at each step. For i = 1, the probability for a guess to be kept is 4 out of
31, since we have 4 candidates for O1. It is easy to see that when we iterate the
process, we get 6 candidates for O2, . . . , and 18 candidates for O8. Therefore,
for each initial guess (31 choices for O8 and 31 choices for N0

2 ), the Oi’s must
all be among this list of candidates, so the probability p for an initial guess to
be accepted is :

p =
4
31
× 6

31
× . . .× 18

31
= 2−13.16

This is small enough, since there are 312 * 29.9 initial guesses. So the good value
of the mask O8 should be uniquely identified by our method. We implemented
this attack (see Section B.4) and indeed managed to retrieve the correct mask
with high probability. In the (rare) case of a false alarm, we just do not exploit
the message, and repeat the attack with another value of the salt.

B.2 Inverting the PRNG

After unmasking the scrambled message, we now have 9 consecutive outputs of
the random number generator (O0, . . . , O8) for which we search all the possible
initial seeds. Our attack is exactly similar to the unmasking attack, i.e. we
use interval bounding techniques. The only difference is that we use thiner
intervals, in order to learn the initial state with better precision. So we wish
to split the interval [0, 230 − 1] into m intervals of length l. Luckily, 230 − 1 is
smooth :

230 − 1 = 32 × 7× 11× 31× 151× 331

so we have many possible choices for m and l, such that m · l = 230 − 1. Then,
we guess the initial value of

N t
1 =

⌊
seed0

1

l

⌋
and N t

2 =
⌊

seed0
2

l

⌋
which are now integers in the interval [0, m] so there are m2 possible guesses.
We write :

3 ·N t
1 + N t

2 ≤
3 · seedt

1 + seedt
2

l
< 3 ·N t

1 + N t
2 + 4

and we observe that N t+1
1 =

⌊
3·seedt

1+seedt
2

l mod m
⌋
. Therefore we obtain 4 can-

didates after the first update, . . . , and 18 candidates after the 8-th update (ex-
actly like in the previous section).

If l is chosen small enough, these candidates all lie in the same interval modulo
34638622, so they correspond to a unique output of the PRNG. Hence, we can
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eliminate a fraction 319 * 244.59 of the initial guesses by simply testing if they
correspond to a valid output sequence. Roughly, we need 18 · l ) 346386222 for
this to work. A good choice is to pick m = 3243933 intervals of length l = 331.
The number of initial guesses is m2 = 243.26. In theory, this is sufficient to obtain
a unique candidate since 244.59 > 243.26.

B.3 Early-Abort

Instead of implementing the basic attack, we used a simple refinement, which
consists in repeatedly refining the interval length l. We start by working
with m = 31 and l = 34638622 (like in the unmasking attack). We obtain a
list of candidate intervals of length l where seed0

1 and seed0
2 may lie. Then, we

increase m to m′ > m, such that m′ remains a divisor of 230 − 1.
We do not need to explore all the intervals of size 230−1

m′ , but only m′
m sub-

intervals, for each solution that was identified with parameters m and l. Thanks
to this trick, we avoid an enumeration that would cost (m′)2. This early-abort
strategy allows to dramatically improve the running time of our attack.

B.4 Experimental Results

We implemented this interval bounding technique on a regular desktop PC. We
started by splitting the search space into 31 intervals of length 34636833 (un-
masking attack). Then, we gradually reduced the size of the intervals. Surpris-
ingly, our experiments revealed some important deviations with the theoretical
predictions. Indeed, the number of candidates at all intermediate stages (and in
particular at the end of the analysis) is much higher than expected (see Table 1).

Table 1. Experimental results averaged over 1000 different passwords

Interval length l Number of intervals m Average number of solutions

34636833 31 1.677

104643 10261 723.559 � 29.499

693 1549411 138905.785 � 217.084

63 17043521 5788944.172 � 222.465

9 119304647 � 227.842

3 357913941 � 230.983

1 230 − 1 � 232.5911

In the end, for an arbitrary output sequence, there are much more solutions for
the initial seed than the theoretical prediction of :

260

319
* 215.41

while we observe on average 232.5911 solutions. It means that there exist output
sequences which are impossible, or with a small number of solutions. It would
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be interesting to explore further on this phenomenon. However, our attack still
works fine, despite the unexpected deviations : we manage to enumerate the
232.5911 candidates in several minutes on a regular PC, thanks to the
early-abort strategy.

B.5 Analysis

To identify the actual hash from the 232.5911 candidates, it is necessary to analyze
several pairs (salt, message). Two pairs are not sufficient, because it is very likely
to observe collisions between two lists of size 232.5911 containing 60-bit values. In
theory, 3 or 4 pairs should be sufficient. However, in practice, there remains about
100 candidates, even if we consider 10 pairs. Actually, the same phenomenon was
observed in [1].

The underlying reason is that the LSB of H(password) have little influence
on the scrambling function. Therefore, even when our prediction on the LSB is
incorrect, we have still a good chance to compute the correct scrambled message.
On the one hand, this property is a problem for the attacker, since he needs to
compute preimages for all candidates in order to retrieve the password. On the
other hand, it also means that the attacker has good chance to authenticate
correctly even when H(password) is invalid.

Our attack has been implemented. It takes several minutes on a typical PC,
while the attack described in [1] requires about one hour running time on a PC.
This attack retrieves a hash of the user’s password. While this may be enough for
practical purpose, it is interesting to analyze the security of the hash function.
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Abstract. HAS-160 is a cryptographic hash function which is designed
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the result to the first 53 steps of HAS-160. The time complexity of the
attack is about 255.
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1 Introduction

One of the main impetus for recent vitalization of hash function research is due
to works of Xiaoyun Wang et al.[3,4,5,6]. They produced collision search attacks
for MD4, MD5, RIPEMD, HAVAL, SHA-0, and SHA-1, and developed powerful
techniques for analyzing currently popular hash functions.

HAS-160 is a cryptographic hash function developed by Chae Hoon Lim et
al. It is a Korean industry standard (TTAS.KO-12.0011/R1)[1], and used widely
in Korea. The design of HAS-160 is influenced by SHA-1 and MD family hash
functions, and it processes messages by 512-bit blocks and produces 160-bit
outputs.

Since HAS-160 shares many features with MD family hash functions, the
methods developed by Wang is also applicable to the analysis of HAS-160. In
ICISC 2005, Yun et al.[7] applied Wang’s methods to HAS-160 and found colli-
sions for 45-step version of HAS-160 (out of the full 80 steps).

In this paper, we extend the results of [7], and produce a collision search
attack for the first 53 steps of HAS-160. The time complexity of the attack is
about 255, which would be feasible with supercomputers.

No significantly new technique was used other than those in [7], but by se-
lecting message differences judiciously and constructing more complicated first
round differential path, we were able to extend the result in [7] from 45 steps to
53 steps.
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In the following, we will first describe HAS-160 briefly in Section 2, and present
the collision search attack for 53-step HAS-160 in Section 3. In Section 4, we
conclude our paper.

2 Description of HAS-160

HAS-160 is a Merkle-Damg̊ard hash function, and its compression function uses
160-bit chaining values and 512-bit message blocks. The chaining values are
represented by five 32-bit variables a, b, c, d, and e, and the 512-bit message
block is represented by 16 32-bit words (m0, m1, . . . , m15).

HAS-160 applies 80 steps of simple transformations to its chaining values,
starting from the IV. One round consists of 20 steps, therefore HAS-160 has 4
rounds in total. Let’s denote by (ai, bi, ci, di, ei) the chaining values (a, b, c, d, e)
right after step i.

The initial chaining values (IV) are fixed and given as (a0, b0, c0, d0, e0)=
(0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0).

The transformation at step i (i = 1, . . . , 80) can be described as follows:

– ai ← a
s1,i

i−1 + fi(bi−1, ci−1, di−1) + ei−1 + xi + ki

– bi ← ai−1

– ci ← b
s2,i

i−1

– di ← ci−1

– ei ← di−1

where + denotes the addition modulo 232, and ) the left bit rotation. Here the
most significant bit is written at the leftmost position. Therefore ) moves bits
toward the most significant bit (with the wrap-around from the most significant
bit). s1,i and s2,i are amounts of bit rotations used in step i. s1,i is dependent
on i mod 20 and the values are given in Table 1.

Table 1. The bit rotation s1

step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

s2,i are dependent on the round, i.e., it is constant in each round, and changes
the value as the round is changed. The values are given as follows:

– Round 1: s2 = 10
– Round 2: s2 = 17
– Round 3: s2 = 25
– Round 4: s2 = 30

fi and ki represent a boolean function and a constant used in step i, respec-
tively. They are given in the following table.
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Table 2. Boolean functions and constants for HAS-160

Round Step (i) Boolean function (fi) Constant (ki)

1 1 ∼ 20 (x ∧ y) ∨ (¬x ∧ z) 0
2 21 ∼ 40 x ⊕ y ⊕ z 0x5a827999

3 41 ∼ 60 (x ∨ ¬z) ⊕ y 0x6ed9eba1

4 61 ∼ 80 x ⊕ y ⊕ z 0x8f1bbcdc

Finally, xi represents the message word used in step i. We have initially given
16 message words m0, . . . m15. For each round, there are 20 steps and HAS-
160 uses 20 message words, one for each step. For this, HAS-160 produces four
additional message words out of the original 16 message words, by taking XORs
of four of the original message words. We may call the additionally produced
words ‘dependent words’, and the original 16 words ‘independent words’. The
words are given in Table 3.

Table 3. Message scheduling for HAS-160

i Round 1 Round 2 Round 3 Round 4

1 m8 ⊕ m9 m11 ⊕ m14 m4 ⊕ m13 m15 ⊕ m10

⊕m10 ⊕ m11 ⊕m1 ⊕ m4 ⊕m6 ⊕ m15 ⊕m5 ⊕ m0

2 m0 m3 m12 m7

3 m1 m6 m5 m2

4 m2 m9 m14 m13

5 m3 m12 m7 m8

6 m12 ⊕ m13 m7 ⊕ m10 m8 ⊕ m1 m11 ⊕ m6

⊕m14 ⊕ m15 ⊕m13 ⊕ m0 ⊕m10 ⊕ m3 ⊕m1 ⊕ m12

7 m4 m15 m0 m3

8 m5 m2 m9 m14

9 m6 m5 m2 m9

10 m7 m8 m11 m4

11 m0 ⊕ m1 m3 ⊕ m6 m12 ⊕ m5 m7 ⊕ m2

⊕m2 ⊕ m3 ⊕m9 ⊕ m12 ⊕m14 ⊕ m7 ⊕m13 ⊕ m8

12 m8 m11 m4 m15

13 m9 m14 m13 m10

14 m10 m1 m6 m5

15 m11 m4 m15 m0

16 m4 ⊕ m5 m15 ⊕ m2 m0 ⊕ m9 m3 ⊕ m14

⊕m6 ⊕ m7 ⊕m5 ⊕ m8 ⊕m2 ⊕ m11 ⊕m9 ⊕ m4

17 m12 m7 m8 m11

18 m13 m10 m1 m6

19 m14 m13 m10 m1

20 m15 m0 m3 m12



Collision Search Attack for 53-Step HAS-160 289

3 Collision Search Attack

3.1 Notations and Conventions

We would like to find a collision pair (M, M ′) for 53-step HAS-160, that is,
a pair of different messages M , M ′ with identical hash output of the step
53. We will restrict ourselves to one-block collision pairs. So we may write
M = (m0, m1, . . . , m15), and M ′ = (m′

0, m
′
1, . . . , m

′
15). We will further restrict

ourselves to the collision pairs satisfying

m′
3 −m3 = m′

6 −m6 = m′
8 −m8 = m′

15 −m15 = 231, m′
i = mi (i �= 3, 6, 8, 15).

The reason for choosing m3, m6, m8, m15 and the difference 231 for these
words is that, in that case there is no difference in steps between 31 and 53; for
each step, either the message word used doesn’t contain m3, m6, m8, m15, or
the differences are cancelled by the XOR operation. Therefore, if we can find a
collision for the first 30 steps, then this naturally extends to the collision pair
for the first 53 steps. Since m6 is the message word for step 54, this cannot be
extended further.

Note that in the ICISC 2005 paper [7], similar choice of message word differ-
ences were made; in [7], the differences were given at the message words m3 and
m9, i.e., m′

3 −m3 = m′
9 −m9 = 231. This choice was also motivated by the fact

that, if one may find an inner collision at the step 24, then no further message
differences are given until the step 46, producing collision for 45-step HAS-160.

As notational convention, we will distinguish the hash function operation for
the message block M ′ from that for the message block M by appending ′ symbol
to all the corresponding variables. For example, if a3 is the chaining value a
after step 3 during the HAS-160 computation for the message M , then a′

3 is the
corresponding variable for M ′.

For a chaining variable v (v = ai, bi, ci, di, or ei for some i), the difference at
v, denoted by Δv, is defined as

Δv = v′ − v (mod 232),

i.e., Δv is the difference between the value of v for the message M ′ and the value
of v for the message M , measured by the result of subtraction modulo 232. The
message word differences are defined similarly.

Following Wang’s methods, we will keep track of the actual bit positions of
the chaining variables where the bits differ, along with the modular differences.
Precisely, we give the following definition:

Definition 1. For any v representing a bit sequence of length 32, and any in-
dex j (j=1, . . . , 32), v[j] (or sometimes v[+j]) denotes the value obtained by
changing the j-th bit of v from 0 to 1. This notation implicitly states that j-th
position of v is 0.

Similarly v[−j] denotes the value obtained by changing the j-th bit of v from
1 to 0. Also this implicitly states that the j-th position of v is 1.
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Finally, for l distinct indices j1, . . . , jl, the notation v[±j1,±j2, . . . ,±jl] is
a shorthand for

v[±j1][±j2] · · · [±jl] = (· · · ((v[±j1])[±j2]) · · ·) [±jl].

3.2 Differential Path and Sufficient Conditions

Table 4 represent the differential path we used, and Table 5 represent the set
of sufficient conditions for the path. All the chaining values are systematically
given by the variables ai, since it is easy to convert between these variables and
other variables bi, . . . , ei. For example, bi = ai−1, and ci = b

s2,i

i−1 = a
s2,i

i−2 .
The conditions in Table 5 is a set of sufficient conditions for the path given in

Table 4, in the sense that, if all the variables ai,j (i = 1, . . . , 25 and j = 1, . . . , 32)
satisfy all the equations in the Table 5 during the hash function computation
for a message M , then the differences between the chaining variables for the
HAS-160 computations of M and M ′ will follow the path given in Table 4, and
(M, M ′) will constitute a collision pair for the first 53 steps of HAS-160.

The amounts of bit rotation in HAS-160 (i.e., the parameters s1,i, s2,i) varies
wildly depending on the steps, and this makes finding an appropriate differential
path such as Table 4 for HAS-160 much harder than in the case of other hash
functions. In case of HAVAL, for example, the amount of bit rotation is constant
in each steps. Therefore, one may plan ahead how a bit difference in a chaining
variable creates or cancels other bit differences in other chaining variables; since
the bit rotation is constant, if a pre-existing bit difference can make another
bit difference in other bit position, then even if we move those bit differences
a few steps up and down, still this property holds. Therefore we can plan cre-
ation and annihilation of bit differences ahead without fixing the actual steps
where such differences occur. The only obstruction is that the resulting set of
conditions doesn’t contain any contradiction. Hence, this gives great flexibility
to the designer of such differential paths; one can first plan the bit difference cre-
ation/annihilation and later try to posit them in actual steps, and check whether
this leads to any contradiction. If no contradiction occurs, then we found a valid
differential path. If a contradiction occurs, we try another positioning of the bit
differences in other steps. [8]

The bit rotation of SHA-1 is similarly constant. And although the bit rotation
of MD5 is not constant, MD5 uses only four amounts of bit rotations in each
round. Contrary to these tame bit rotations, the bit rotation of HAS-160 varies at
each steps so finding a differential path is much difficult in case of HAS-160. This
was essentially done manually by trial-and-error, and the trial-and-error process
was not quite systematic or scientific; we didn’t try some kind of exhaustive
searches. We started the differential path from the start down to the middle of
the Round 1, and also went from the Step 30 up to the middle of the Round
1, and tried to meet in the middle. Then we tried tweaking the two threads of
the differential path by introducing a few more bit differences, or eliminating
some bit differences, until they meet and the resulting set of conditions doesn’t
contain contradiction.
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3.3 Collision Search Algorithm

Using the path given at Table 4, and the sufficient conditions given in Table 5,
now we can give a collision search algorithm for 53-step HAS-160.

Table 5 give 434 conditions in total. Therefore, heuristically a random message
M will satisfy all the conditions with probability about 2−434, which is clearly
worse than the birthday probability of 2−80. Therefore we will use the message
modification technique introduced in [3] to enhance the probability.

In order to do this, we need to switch the roles of independent words and
dependent words. For example, according to Table 3, x1 is a dependent word
defined by m8 ⊕ m9 ⊕m10 ⊕m11, and the words x12, . . . x15 are independent

Table 4. Differential path for 53-step HAS-160

Step xi x′
i s2,i s1,i a′

i

1 m8 ⊕ m9 x1[32] 10 5 a1[−32]
⊕m10 ⊕ m11

2 m0 10 11 a2[11,−12]
3 m1 10 7 a3[18, 19, 20, 21,−22]
4 m2 10 15 a4[1, · · · , 16,−17]
5 m3 x5[32] 10 6 a5[7, 8,−9, 18,−19, 32]

6 m12 ⊕ m13 x6[32] 10 13 a6[3,−4, 17,−20,−21, 22]
⊕m14 ⊕ m15

7 m4 10 8 a7[−14, · · · ,−17, 18, 22, 29]
8 m5 10 14 a8[4,−10, 11]
9 m6 x9[32] 10 7 a9[13,−15, 16, 18,−19, 30, 31,−32]
10 m7 10 12 a10[−10,−11, 12,−17,−24, 25]

11 m0 ⊕ m1 x11[32] 10 9 a11[−1, 2,−13,−14,−15, 16, 28,−32]
⊕m2 ⊕ m3

12 m8 x12[32] 10 11 a12[−8, 9,−17,−21, 22, 26]
13 m9 10 8 a13[8, 10, 11,−12, 26, 27,−28]
14 m10 10 15 a14[−10, 17, 18,−19, 28, 29, 30,−31]
15 m11 10 6 a15[11, · · · , 14,−15,−16, 20,−23, 26,−27]

16 m4 ⊕ m5 x16[32] 10 12 a16[3, 5, 6,−7,−11,−12, 13,
⊕m6 ⊕ m7 − 20, 21,−22,−31, 32]

17 m12 10 9 a17[−11, 18,−20,−26, 27]
18 m13 10 14 a18[1, 5, 18, 20, 22, 27]
19 m14 10 5 a19[4, 13, 30]
20 m15 x20[32] 10 13 a20[−4, 11]

21 m11 ⊕ m14 17 5 a21[11]
⊕m1 ⊕ m4

22 m3 x22[32] 17 11 a22[−30]
23 m6 x23[32] 17 7 ·
24 m9 17 15 a24[15]
25 m12 17 6 a25[−15]

26 m7 ⊕ m10 17 13 ·
⊕m13 ⊕ m0

27 m15 x27[32] 17 8 ·
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Table 4. (continued)

Step xi x′
i s2,i s1,i a′

i

28 m2 17 14 ·
29 m5 17 7 ·
30 m8 x30[32] 17 12 ·
31 m3 ⊕ m6 17 9 ·

⊕m9 ⊕ m12

32 m11 17 11 ·
33 m14 17 8 ·
34 m1 17 15 ·
35 m4 17 6 ·
36 m15 ⊕ m2 17 12 ·

⊕m5 ⊕ m8

37 m7 17 9 ·
38 m10 17 14 ·
39 m13 17 5 ·
40 m0 17 13 ·
41 m4 ⊕ m13 25 5 ·

⊕m6 ⊕ m15

42 m12 25 11 ·
43 m5 25 7 ·
44 m14 25 15 ·
45 m7 25 6 ·
46 m8 ⊕ m1 25 13 ·

⊕m10 ⊕ m3

47 m0 25 8 ·
48 m9 25 14 ·
49 m2 25 7 ·
50 m11 25 12 ·
51 m12 ⊕ m5 25 9 ·

⊕m14 ⊕ m7

52 m4 25 11 ·
53 m13 25 8 ·
54 m6 x54[32] 25 15 a54[±32]

words m8, . . . , m11. But, changing the perspective, we may regard x1, x12, x13,
and x14 as independent words and consider x15 as the dependent word which is
equal to x1⊕x12⊕x13⊕x14. In this way we may apply the message modification
technique to words x1, x12, x13, and x14. In this case x15 is determined by the
choices of the independent words, therefore we cannot apply simple message
modification technique to x15.

Similarly, we will redefine the dependent word as the last one of the dependent
set of five words. In other words, after the redefinition, the dependent words are
x11, x15, x16, x20, and the rest of the message words are independent.

Therefore, we may apply the message modification technique to Steps 1 to 10
with probability 1. At Step 11, the dependent word x11 is used, and according to
Table 5, there are 27 conditions at the step. So we may satisfy all the conditions
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up to Step 11 with probability 2−27. Again we apply the message modification
technique to Steps 12 to 14, and at Steps 15 and 16 the dependent words x15 and
x16 are used, and there are 54 conditions in total at Step 15 and Step 16. There-
fore, the probability that all the conditions are met at Steps 15 and 16 are 2−54.

If any of the conditions at Step 15 or Step 16 are not satisfied, then we have
to go back to Step 12, redefine message words x12, x13, and x14, and retry Steps
15 and 16 to see if all the conditions are met this time. But, note that at Step
12, there are 23 conditions so the number of message words x12 which make the
corresponding a12 to satisfy all the conditions is heuristically about 29. Similarly
for Step 13, there are about 27 correct x13s, and about 28 correct x14s. In total,
there are about 224 correct (x12, x13, x14) for Steps 12, 13, and 14.

Therefore, even if we backtrack to Step 12 and try all the correct words for
Steps 12, 13, and 14, it is possible that some conditions are not met at Step 15
or 16. In this case we backtrack to Step 1 and try again. The probability that
all the conditions are met after all these is 2−30.

Table 5. Sufficient conditions for the differential path

Var. No. of Sufficient conditions
conds.

a1 7 a1,1 = 1, a1,2 = 0, a1,8 = 1, a1,10 = 0, a1,11 = 1, a1,12 = 1, a1,32 = 1

a2 12 a2,3 = 1, a2,7 = 1, a2,8 = 0, a2,9 = a1,9, a2,10 = 0, a2,11 = 0, a2,12 = 1,
a2,25 = 1, a2,29 = 0, a2,30 = 0, a2,31 = 1, a2,32 = 0

a3 25 a3,1 = a2,1, a3,2 = a2,2, a3,3 = 0, a3,4 = a2,4, . . . , a3,6 = a2,6, a3,7 = 0,
a3,8 = 1, a3,9 = 0, a3,10 = 1, a3,18 = 0, . . . , a3,21 = 0, a3,22 = 1, a3,23 = a2,23,
a3,24 = a2,24, a3,25 = 0, a3,26 = a2,26, . . . , a3,31 = a2,31, a3,32 = 1

a4 26 a4,1 = 0, . . . , a4,16 = 0, a4,17 = 1, a4,21 = 0, a4,22 = 1, a4,25 = 1, a4,26 = 1,
a4,28 = 0, . . . , a4,30 = 0, a4,31 = 1, a4,32 = 1

a5 28 a5,4 = 1, a5,5 = 1, a5,7 = 0, a5,8 = 0, a5,9 = 1, . . . , a5,11 = 1, a5,12 = 0,
a5,13 = 0, a5,14 = 1, a5,15 = 0, . . . , a5,18 = 0, a5,19 = 1, a5,20 = 0, a5,21 = 1,
a5,22 = 1, a5,23 = 0, a5,24 = 0, a5,25 = 1, . . . , a5,27 = 1, a5,28 = 0, a5,29 = 1,
. . . , a5,31 = 1, a5,32 = 0

a6 27 a6,1 = 0, a6,3 = 0, a6,4 = 1, a6,5 = 0, a6,6 = a5,6, a6,7 = 0, a6,8 = 0,
a6,10 = 1, a6,11 = 0, . . . , a6,17 = 0, a6,19 = 1, . . . , a6,21 = 1, a6,22 = 0,
a6,23 = 1, . . . , a6,27 = 1, a6,28 = 0, a6,29 = 0, a6,32 = 0

a7 19 a7,1 = 1, a7,9 = 0, a7,10 = 1, a7,13 = 1, . . . , a7,17 = 1, a7,18 = 0, a7,19 = 0,
a7,20 = 1, a7,22 = 0, a7,26 = a6,26, a7,27 = 0, a7,28 = 1, a7,29 = 0, a7,30 = 1,
a7,31 = 0, a7,32 = 1

a8 25 a8,1 = 1, a8,2 = 1, a8,3 = a7,3, a8,4 = 0, a8,5 = a7,5, a8,6 = a7,6, a8,7 = 0,
a8,8 = a7,8, a8,9 = 1, a8,10 = 1, a8,11 = 0, a8,13 = 1, . . . , a8,15 = 1,
a8,20 = 0, a8,21 = a7,21, a8,22 = 1, a8,24 = 1, a8,25 = 0, . . . , a8,28 = 0,
a8,30 = 0, a8,31 = 0, a8,32 = 1

a9 22 a9,1 = 0, a9,2 = 0, a9,4 = 0, a9,6 = 1, a9,7 = 1, a9,13 = 0, a9,14 = 1,
a9,15 = 1, a9,16 = 0, a9,18 = 0, a9,19 = 1, a9,20 = 0, a9,21 = 0, a9,23 = 0,
a9,24 = 1, a9,25 = 1, a9,26 = 0, a9,27 = 1, a9,28 = 0, a9,30 = 0, a9,31 = 0,
a9,32 = 1

a10 23 a10,3 = a9,3, a10,4 = 1, a10,5 = a9,5, a10,6 = 0, . . . , a10,9 = 0, a10,10 = 1,
a10,11 = 1, a10,12 = 0, a10,14 = 1, a10,16 = 1, a10,17 = 1, a10,18 = 0, a10,20 = 1,
a10,21 = 0, a10,22 = a9,22, a10,23 = 0, a10,24 = 1, a10,25 = 0, a10,26 = 1,
a10,28 = 0, . . . , a10,30 = 0
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Table 5. (continued)

Var. No. of Sufficient conditions
conds.

a11 27 a11,1 = 1, a11,2 = 0, a11,3 = 0, a11,7 = 1, a11,8 = 0, a11,9 = 1, a11,10 = 0, . . . ,
a11,12 = 0, a11,13 = 1, . . . , a11,15 = 1, a11,16 = 0, a11,17 = 0, a11,18 = 1, a11,20 = 1,
a11,21 = 0, a11,22 = 0, a11,23 = 1, a11,25 = 0, a11,26 = 1, a11,27 = 0, . . . , a11,29 = 0,
a11,30 = 1, a11,31 = a10,31, a11,32 = 1

a12 23 a12,1 = 0, a12,2 = 1, a12,3 = 1, a12,6 = 0, a12,8 = 1, a12,9 = 0, . . . , a12,12 = 0,
a12,16 = 1, . . ., a12,21 = 1, a12,22 = 0, a12,23 = 0, a12,24 = 1, a12,25 = 0, a12,26 = 0,
a12,27 = 1, a12,30 = a11,30, a12,32 = 1

a13 25 a13,1 = 1, a13,2 = 1, a13,4 = 0, a13,5 = 1, a13,6 = 1, a13,7 = a12,7, a13,8 = 0,
a13,9 = 1, a13,10 = 0, a13,11 = 0, a13,12 = 1, a13,16 = 1, a13,17 = 0, . . . , a13,21 = 0,
a13,23 = 1, . . . , a13,25 = 1, a13,26 = 0, a13,27 = 0, a13,28 = 1, a13,31 = 0, a13,32 = 0

a14 24 a14,1 = 0, a14,2 = 0, a14,3 = a13,3, a14,4 = 1, . . . , a14,6 = 1, a14,10 = 1, a14,11 = 0,
a14,12 = 1, a14,13 = a13,13, a14,16 = 0, . . . , a14,18 = 0, a14,19 = 1, a14,20 = 1,
a14,21 = 0, a14,22 = 1, a14,25 = 0, a14,27 = 1, a14,28 = 0, . . . , a14,30 = 0, a14,31 = 1,
a14,32 = 0

a15 27 a15,1 = 0, a15,2 = a14,2, a15,3 = a14,3, a15,4 = 0, a15,5 = 0, a15,6 = 1, a15,7 = 1,
a15,8 = 0, a15,9 = 1, a15,10 = 0, . . . , a15,14 = 0, a15,15 = 1, a15,16 = 1, a15,17 = 0,
a15,18 = 1, a15,20 = 0, . . . , a15,22 = 0, a15,23 = 1, a15,25 = 1, a15,26 = 0,
a15,27 = 1, . . . , a15,29 = 1

a16 27 a16,1 = 1, a16,3 = 0, a16,4 = 1, a16,5 = 0, a16,6 = 0, a16,7 = 1, a16,8 = 0, a16,9 = 0,
a16,10 = 1, . . . , a16,12 = 1, a16,13 = 0, a16,16 = 1, a16,17 = a15,17, a16,20 = 1,
a16,21 = 0, a16,22 = 1, a16,23 = 0, a16,24 = 0, a16,25 = 1, . . . , a16,27 = 1, a16,28 = 0,
a16,29 = 1, a16,30 = 0, a16,31 = 1, a16,32 = 0

a17 24 a17,1 = 1, a17,4 = 0, a17,5 = 1, a17,8 = a16,8, a17,9 = 0, a17,10 = 1, a17,11 = 1,
a17,12 = 0, a17,13 = 1, a17,15 = 0, . . . , a17,18 = 0, a17,20 = 1, a17,21 = 1, a17,22 = 0,
a17,23 = 1, a17,24 = 0, a17,25 = 1, a17,26 = 1, a17,27 = 0, a17,30 = 1, . . . , a17,32 = 1

a18 18 a18,1 = 0, a18,3 = a17,3 ⊕ 1, a18,4 = 0, a18,5 = 0, a18,9 = 1, a18,10 = 1, a18,13 = 1,
a18,15 = 1, a18,16 = 1, a18,17 = 0, a18,18 = 0, a18,20 = 0, a18,22 = 0, a18,23 = 0,
a18,27 = 0, a18,28 = 0, a18,31 = 1, a18,32 = 0

a19 7 a19,4 = 0, a19,11 = 1, a19,13 = 0, a19,15 = 0, a19,19 = a18,26 ⊕ 1, a19,21 = a18,11,
a19,30 = 0

a20 6 a20,4 = 1, a20,5 = a19,20 ⊕ 1, a20,11 = 0, a20,21 = a18,11 ⊕ 1, a20,26 = a19,26 ⊕ 1,
a20,28 = 0

a21 5 a21,11 = 0, a21,13 = a20,13, a21,15 = a20,30 ⊕ 1, a21,28 = 0, a21,30 = a20,13 ⊕ 1

a22 2 a22,21 = a21,4, a22,30 = 1

a23 2 a23,15 = a21,30, a23,28 = a22,11 ⊕ 1

a24 2 a24,15 = 0, a24,30 = a23,30 ⊕ 1

a25 1 a25,15 = 1

Therefore, the amount of computations for satisfying all the conditions up to
Step 16 is

(227 · (Steps 1 to 11) + 224 · (Steps 12 to 16)) · 230 ≈ 260.54 steps.

From Step 20 to Step 25, all the message words are dependent words; after the
redefinition, x20 is a dependent word, and x21, . . . , x25 are words in the Round
2, which are already fixed after the message modifications for the Round 1. And
the number of conditions for these steps is 18 in total. Therefore after satisfying
all the conditions up to Step 16, we may try 218 choices of (x17, x18, x19) to
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satisfy all the remaining conditions. But the complexity involved in these steps
are negligible compared to the complexity for the steps 1 to 16.

Therefore, the amount of total computation is

(227 · (Steps 1 to 11) + 224 · (Steps 12 to 16)) · 230 + 218 · (Steps 17 to 25) ≈ 260.54 steps

which corresponds to about 254.81 ≈ 255 hash function operations of 53-step
HAS-160.

4 Conclusion

In this paper, we presented a collision search attack for 53-step HAS-160 with
time complexity 255. This attack is to find an inner collision with long trailing
zero message word differences, and this cannot be extended to the whole of HAS-
160. We believe that new techniques should be used in order to find an attack
for the complete HAS-160.
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Abstract. Traditionally, there are two methods to implement anony-
mous channels: free-route networks like onion routing and cascade net-
works like mix network. Each of them has its merits and is suitable for
some certain applications of anonymous communication. Both of them
have their own drawbacks, so neither of them can satisfy some applica-
tions. A third solution to anonymous channels, Klein bottle routing, is
proposed in this paper. It fills the gap between onion routing and mix
network and can be widely employed in anonymous communication.

Keywords: Anonymous channel, onion routing, mix network, Klein bot-
tle routing.

1 Introduction

Anonymous (communication) channel is a very useful tool in e-business, e-
government and other cryptographic applications, which often require anonymity
and privacy. In an anonymous channel, the messages are untraceable, so can be
transmitted anonymously. Traditionally, there are two methods to implement
anonymous channels: onion routing [5,6,1] and mix network [4,8,13,12,11].

Onion routing is an anonymous routing mechanism. It employs free-route
mechanism and decryption chain. A node in an onion routing communication
network can send a message to any node in the network with a connection to
it. The sender can flexibly choose any route from all the connections between
him and the receiver. A decryption chain is employed to mask each message
packet when it is transmitted. In a packet, a message is encrypted layer by layer
using the public keys of all the routers on its route and the receiver. Each layer
of encryption is just like a layer of onion skin, which encrypts the encrypted
packet for a router and the identity of the next router. Given a message packet,
each router unwraps a layer of encryption by decrypting the message packet
using its private key, finds out the identity of the next router and forwards
the unwrapped message packet to the next router. When a packet is routed by
each router together with a large number of other packets, the onion structure
and decryption chain prevent it from being traced. Onion routing is flexible
and can be employed in various anonymous communication applications like
anonymous email and anonymous browsing when verifiability of correct routing
is not required. However, onion routing has two drawbacks. Firstly, it is not
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verifiable and there is no guarantee that no message packet is lost or tampered
with as all the existing public verifiability mechanism in anonymous channels
are re-encryption oriented. Secondly, untraceability depends on communication
traffic in the network and traffic analysis can always get some hint about a
message packet’s route unless each node sends a packet to every other node
during transmission of this packet.

Strictly speaking, mix network is not a routing mechanism as there is only one
unique route and one unique receiver in a mix network. This routing mechanism
is also called cascade network. Multiple fixed nodes are stationed in a fixed order
and form a fixed route called a mix network. Each sender encrypts and submits
his message to the first node in the mix network. After all the senders have sub-
mitted their messages, each node in the mix network take turns to re-encrypt
and shuffle them. The last node outputs the repeatedly re-encrypted and shuf-
fled messages to the receiver. The receiver can read the messages after they are
decrypted but cannot link them to their senders. Mix network is usually em-
ployed in special anonymous communication applications transmitting a batch
of messages to a unique receiver like e-voting [10] and anonymous e-auction [14].
As every sender sends a message through the unique route to the unique receiver
in a mix network, there is no concern for traffic analysis. As re-encryption in-
stead of decryption-chain is employed to mask the packets, a mix network can be
publicly verified to have transmitted every message without tampering with it.
However, mix network is not flexible as a sender cannot freely choose receiver or
route. Therefore, mix network is not a general solution to anonymous channels
and can only be employed in special applications like e-voting and e-auction.

When general and flexible anonymous channel with public verifiability is re-
quired (e.g. for insured anonymous email), neither onion routing nor mix network
can be applied. So a third type of anonymous channel is needed in this circum-
stance, which combines merits of the two types of traditional anonymous channel
and overcomes their drawbacks. In this paper flexible routing in onion routing
and re-encryption masking in mix network are combined to design a flexible and
publicly verifiable general implementation of anonymous routing. It is called
Klein bottle routing. The idea of applying re-encryption masking to anonymous
routing was independently proposed by Gomulkiewicz et al [9]. Their proposal
is a modified onion routing scheme to prevent repetitive attack. Danezis pointed
out in [2] that the routing scheme in [9] is vulnerable to an interception-insertion
attack. Our proposal in this paper is a new type of anonymous channel with its
own security model and properties. Our new solution fills the gap between onion
routing and mix network. Moreover, our scheme can be easily modified to prevent
the attack in [2].

Contribution of this paper is as follows. Firstly, security of anonymous routing
is modeled. A basic requirement for anonymous routing, isolated anonymity, is
defined. Secondly, an encryption algorithm, ElGamal encryption with universal
re-encryption and n-out-of-n distributed decryption, is designed as a variant of
the ElGamal encryption algorithm with universal re-encryption [7]. Then Klein
bottle routing is designed. In Klein bottle routing, to enable re-encryption of a
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packet without knowledge of the receiver’s public key, the ElGamal encryption
algorithm with universal re-encryption and n-out-of-n distributed decryption
are employed. As Klein bottle routing is a flexible routing scheme, there is no
practical method to completely prevent traffic analysis. However, measures can
be taken to reduce the harm of traffic analysis. For example, to make traffic
analysis more difficult, in Klein bottle routing the size of a message packet is
not changed when it is transmitted. Finally, security of Klein bottle routing
is analysed. It is firstly formally proved to be isolatedly anonymous, namely
anonymous when traffic analysis attack is not taken into consideration. It is
then illustrated to be flexible, publicly verifiable and to resist traffic analysis
based on packet size statistics.

2 Security of Anonymous Routing

In an anonymous routing system, each message is transmitted in the form of a
packet, which contains two parts: encrypted data and encrypted routing infor-
mation. The encrypted data is the encryption of the transmitted message, while
the encrypted routing information is the encryption of the routers’ identities.
When a message s is sent by sender S through routers N1, N2, . . . , Nm to re-
ceiver R, it is transmitted in a packet chain p0, p1, . . . , pm where pi is the packet
sent by Ni to Ni+1. (S is regarded as N0 and R is regarded as Nm+1) A basic
requirement for anonymity in an anonymous routing system is raised in the new
definition as follows..

Definition 1. An adversary randomly chooses two input packets p1 and p2 for
a router to route, then the router selects i from {1, 2} and routes pi to an out-
put packet p′. The communication channel is isolatedly anonymous if given p′,
without the router’s help the adversary can output i with a probability no more
than 0.5 + ε and ε is negligible.

Isolated anonymity is only a basic requirement for anonymity without consid-
ering traffic analysis. In practice, anonymity requirement in a communication
network is more sophisticated. When an attacker can monitor all the traffic in
a communication network, he can perform a traffic analysis, which takes into
account the time each packet is transmitted between two routers. The attacker
can try to analyse which of all the packets transmitted in the network are more
likely to contain the same message. Obviously, isolated anonymity is necessary
but not sufficient to guarantee anonymity, since it cannot guarantee that no
message can be traced when traffic analysis is used. For example, when only
one message is transmitted in the network in a long enough time period, traffic
analysis definitely reveals its route. In another example, in most onion routing
schemes an observer monitoring the traffic can tell how far each packet is from
its destination according to its length. This advantage enables the observer to
perform a simple but effective traffic analysis attack. For example, if a router
receives a message packet with n routers to pass and after a long enough pe-
riod only sends out one message packet with n− 1 routers to pass, the observer
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can link these two packets and deduce that they contain the same message. As
the traffic in a network is variable and complicated, traffic analysis is complex
and difficult to formally define. Various analysis methods on the traffic might
be effective depending on distribution of the routers, their connections and the
traffic. So anonymity in a general and practical anonymous channel is difficult to
precisely define when traffic analysis is involved. In this paper it is only required
that the changing packet size based traffic analysis attack against anonymity
is prevented, so that isolated anonymity can be achieved. More sophisticated
traffic analysis attack is not considered in the relatively simple secuirty model
in this paper.

Validity and public verifiability of routing are also important. A dishonest router
may discard or tamper with a message packet. To publicly guarantee validity of
routing of every packet, each router must be publicly verified to strictly follow the
routing protocol when routing all the packets passing him. More precisely, each
router must prove that each of its input packets is routed to one of its output pack-
ets containing the same message, which must be publicly verifiable.

3 Encryption Algorithm

With Klein bottle routing, re-encryption instead of decryption chain is employed
to mask the packets in a communication channel. There are two advantages of
re-encryption based masking. Firstly, validity of re-encryption of a packet can be
publicly proved and verified without revealing its route. Secondly, re-encryption
inherently keeps the size of the packets constant. However, there are some chal-
lenges to application of re-encryption to anonymous routing. Firstly, anonymity
of the communication channel requires that the identities of the receiver and
the routers must remain secret. So re-encryption of a packet must be performed
without knowing who will decrypt it. That means re-encryption must take place
without knowledge of the public key. Secondly, any part of a packet cannot be
encrypted or re-encrypted with a single public key, otherwise the owner of the
corresponding private key can trace the packet.

To implement re-encryption based masking in Klein bottle routing and re-
spond to the two challenges, distributed decryption [3] is applied to the ElGa-
mal encryption with universal re-encryption in [7]. Combination of these two
techniques guarantees that re-encryption based masking can be implemented
without compromising anonymity as re-encryption is performed without public
key and recovering the private key to trace a packet needs collusion of all the
private key share holders.

3.1 An Employed Cryptographic Primitive: Universal
Re-encryption

Universal re-encryption [7] is a cryptographic primitive to be modified and
adopted in this paper. The original ElGamal encryption algorithm is modified in
[7], such that re-encryption can be performed without knowledge of public key.
It is as follows.
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– Key generation
Large primes p and q are chosen, such that q is a factor of p − 1. G is the
subgroup of Zp with order q. g is a generator of G. The private key x is
randomly chosen from Zq, while the public key is y where y = gx. Unless
specified, all multiplication computations are with modulus p.

– Encryption
A message m is encrypted into c = E(m) = ((a0, b0), (a1, b1)) = ((myr0 , gr0),
(yr1 , gr1)) where r0 and r1 are randomly chosen from Zq.

– Decryption
Given a ciphertext c = ((a0, b0), (a1, b1)), the decryption party calculates
m0 = a0/bx

0 and m1 = a1/bx
1 . If m1 = 1, m0 is output as the message. If

m1 �= 1, decryption fails and c is declared as an invalid ciphertext.
– Re-encryption

Given a ciphertext c = ((a0, b0), (a1, b1)), a party without knowledge of y

can calculate c′ = RE(c) = ((a′
0, b

′
0), (a′

1, b
′
1)) = ((a0a

r′
0

1 , b0b
r′
0

1 ), (ar′
1

1 , b
r′
1

1 ))
where r′0 and r′1 are randomly chosen from Zq. c′ is a re-encryption of c
where RE() denotes the re-encryption function.

3.2 A New Encryption Algorithm: ElGamal Encryption with
Universal Re-encryption and n-out-of-n Distributed Decryption

Note that the universal re-encryption mechanism in [7] does not change the
keys of ElGamal encryption algorithm (private key x and public key y = gx),
so the distributed decryption mechanism of ElGamal encryption in [3] can be
applied. The only difference is that n-out-of-n decryption is employed in this
new encryption algorithm while k-out-of-n threshold decryption (k < m) is
employed in [3]. ElGamal encryption with universal re-encryption and n-out-of-
n distributed decryption is designed as follows.

– Key generation
Key sharing parties A1, A2, . . . , An are chosen. Each of them, Ai, selects an
integer xi from Zq as his private key and publishes his public key yi = gxi .
The encryption key is y, which is the product of the public keys of all the
parties:

∏n
i=1 yi. The corresponding decryption key is x =

∑n
i=1 xi, which is

shared among the sharing parties with an n-out-of-n threshold.
– Distributed decryption

A ciphertext c = ((a0, b0), (a1, b1)) encrypted with y is decrypted in the
following way.
1. Each Ai calculates d0,i = bxi

0 and d1,i = bxi
1 for i = 1, 2, . . . , n.

2. m0 = a0/
∏n

i=1 d0,i and m1 = a1/
∏n

i=1 d1,i are calculated. If m1 = 1,
m0 is output as the message. If m1 �= 1, decryption fails and c is declared
as an invalid ciphertext.

Later in this paper, the following notations are used to describe ElGamal
encryption with universal re-encryption and n-out-of-n distributed decryption
when it is employed in our masking and routing mechanism.
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– Routers N1, N2, . . . , Nm and receiver R are the decryption key shares.
– Function EN1,N2,...,Nm,R(s) stands for encryption of message s with a public

key, which is the product of the public keys of N1, N2, . . . , Nm and R 1.
– Function RE(c) stands for universal re-encryption of ciphertext c.
– Function Di(c) denotes partial decryption of ciphertext c = ((a0, b0),

(a1, b1)) using Ni’s private key: Di(c) = ((a0/bxi
0 , b0), (a1/bxi

1 , b1), which
is Ni’s operation in distributed decryption of c.

– Function DR(c) denotes partial decryption of ciphertext c = ((a0, b0), (a1,
b1)) using R’s private key xR: DR(c) = ((a0/bxR

0 , b0), (a1/bxR
1 , b1)).

Obviously, DR(Dm(Dm−1(. . . (EN1,N2,...,Nm,R(s))) . . .) = s.
Anonymity of Klein bottle routing depends on a property of this new en-

cryption system: semantic security under re-encryption. The original universal
re-encryption function in [7] has been proved to be semantically secure under
re-encryption. However, the definition and proof of semantic security under re-
encryption in [7] are not suitable in this paper because of the following two
reasons.

– Klein bottle routing applies distributed decryption to the original encryption
scheme in [7]. So knowledge of some of the partial private keys must be
considered when analysing semantic security.

– In the definition of semantic security in [7], it is assumed that the adversary
generates the input ciphertexts and knows the encryption details. We be-
lieve that it is unnecessary to make this complex assumption in Klein bottle
routing as participants like routers may know nothing about generation of
the input ciphertexts. So we do not adopt this assumption and our definition
is more general.

Semantic security under re-encryption of the ElGamal encryption system with
universal re-encryption and n-out-of-n distributed decryption is defined and
proved in this section in regard of routing application. To introduce semantic
security under re-encryption, a game is introduced in Fig 1.

Definition 2. The ElGamal encryption with universal re-encryption and n-out-
of-n distributed decryption with re-encryption function RE() is semantically
secure under re-encryption if the adversary can win the game in Fig 1 in poly-
nomial time with a probability no more than 0.5 + ε and ε is negligible.

Theorem 1. The ElGamal encryption with universal re-encryption and n-out-
of-n distributed decryption is semantically secure under re-encryption.

Proof: Suppose ci = ((ai,0, bi,0), (ai,1, bi,1)) and c′ = ((a′
0, b

′
0), (a′

1, b
′
1)) =

((ai,0a
r′
0

i,1, bi,0b
r′
0

i,1), (ar′
1

i,1, b
r′
1

i,1)) where r′0 and r′1 are randomly chosen from Zq. If
the adversary can win the game in Fig 1 in polynomial time with a probability
1 Note that the ElGamal encryption system with universal re-encryption and n-out-

of-n distributed decryption is employed. So N1, N2, . . . , Nm and R can cooperate to
decrypt any ciphertext encrypted with the product of their public keys.
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1. An adversary is given two public keys y1 and y2; all the partial public
keys y1,1, y1,2, . . . , y1,n1 and y2,1, y2,2, . . . , y2,n2 such that y1 = n1

i=1 y1,i and
y2 = n2

i=1 y2,i. The adversary may know at most n1 − 1 partial private keys
among {x1,1, x1,2, . . . , x1,n1} and at most n2 − 1 partial private keys among
{x2,1, x2,2, . . . , x2,n2} where yj,i = gxj,i . Thus the adversary has not any knowl-
edge of the two private key x1 and x2 where x1 = n1

i=1 x1,i and x2 = n2
i=1 x2,i.

2. The adversary chooses two ciphertexts c1 and c2 encrypted with y1 and y2

respectively.
3. A challenger randomly selects i from {1, 2}.
4. The challenger calculates c′ = RE(ci) and sends it to the adversary while

keeping i secret.
5. The adversary is asked to output i.

Fig. 1. The game for semantic security of re-encryption

0.5 + ε and ε is not negligible, then the adversary can tell that logai,1
a′
0/ai,0 =

logbi,1
b′0/bi,0 and logai,1

a′
1 = logbi,1

b′1 in polynomial time with a probability
0.5 + ε and ε is not negligible. Note that the adversary does not know private
keys x1 and x2 and his only method to tell whether logai,1

a′
0/ai,0 = logbi,1

b′0/bi,0

and logai,1
a′
1 = logbi,1

b′1 is to solve the decisional Diffie-Hellman problem. This
is contradictory to the widely accepted assumption that DDH problem is difficult
to solve in polynomial time. Therefore the adversary can win the game in Fig 1
in polynomial time with a probability no more than 0.5+ε where ε is negligible. �

4 Klein Bottle Routing

Klein bottle routing is implemented in this section, which employs repeated re-
encryption and distributed decryption instead of a decryption chain. A Klein
bottle is a single sided bottle with no boundary. Its inside is its outside, such
that it contains itself. It is closed and non-orientable, so a symbol on its surface
can be slid around on it and reappear backwards at the same place. We use this
name to emphasize the difference between the new routing scheme and onion
routing. In onion routing, the layers of encryption are removed one by one from
a packet just like the layers of skin are removed one by one from an onion. The
new routing mechanism always maintain the same size and nothing is removed
from it. From its appearance it is impossible to tell how far it has traveled and
how far it is still required to travel. It seems that the packet is traveling on a
tour without start or end as if it is traveling on the surface of a Klein bottle.

A message packet in a Klein bottle routing network consists of a message and a
route list containing the identities of a few routers. Re-encryption and distributed
decryption are employed in Klein bottle routing to implement masking. Namely,
a message is encrypted only once by its sender using a special public key, which
is the combination of the public keys of all the parties on the message’s route.
In the route list, identity of each router on the message’s route is encrypted
by its sender using a special public key, which is the combination of the public
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keys of the routers before that router. In the end of the route list, identity of
the receiver is encrypted by the sender using a special public key, which is the
combination of the public keys of all the routers. When a router transmits and
masks a packet, it re-encrypts and partially decrypts (as its part of distributed
decryption) the message and the route list in the packet before forwarding it to
the next router. Anonymity of the communication channel requires that identity
of the receiver and identities of other routers on the route (except the next router)
are confidential to each router. So the routers must re-encrypt the messages
passing them and their routing information without knowing the receiver’s public
key or other routers’ public keys. Moreover, the decryption key must be shared
such that no single party can decrypt the packets and trace them. So ElGamal
encryption with universal re-encryption and n-out-of-n distributed decryption
described in Section 3 is employed for the routers to re-encrypt and distributedly
decrypt the packets.

Navigation is a new question in Klein bottle routing. Given an encrypted route
list how can a router tell who is the next router to forward a packet to? How is it
possible to prevent a router from knowing the length of the route and its position
on the route? A navigation mechanism called cycling encrypted route list is de-
signed to navigate the messages when re-encryption masking is employed. When
a message packet is initially generated by the sender, it includes and encrypts the
identities of all the routers to pass and the receiver in the order of being visited:
N1, N2, . . . , Nm, R, which is called the encrypted route list in the packet. Each
router decrypts the first ciphertext in the encrypted route list to find the next
router’s identity and then cycles the encrypted route list one step forward so that
the identity of the router after the next router becomes the first identity in the
encrypted route list. For example, the first router decrypts the first ciphertext in
the initial encrypted route list and finds N2 as the next router, then cycles the
encrypted route list so that it becomes the encryption of N2, N3, . . . , Nm, R, N1.
The ith router decrypts the first ciphertext in the current encrypted route list
and finds Ni+1 as the next router, then cycles the encrypted route list so that it
becomes the encryption of Ni+2, Ni+3, . . . , Nm, R, N1, . . . , Ni+1. This technique
guarantees efficient navigation without revealing how close a router is to the
final destination of the message. If necessary, dummy routers can be added into
the end of the route, so that the absolute length of the route is not revealed.

Suppose the sender is S, the receiver is R and routers N1, N2, . . . , Nm are
employed to transmit a message s. ElGamal encryption algorithm with universal
re-encryption and m-out-of-m distributed decryption is set up for each entity as
described in Section 3 where common p, q, G and g are used. The public key
of R is yR and the public key of Ni is yi. The private key of R is xR and the
private key of Ni is xi. Klein bottle routing protocol is demonstrated in Figure 2
in Figure 2 and described as follows.

1. S chooses the route S −N1 − N2 − . . . − Nm − R for message s and sends
packet (c0, d0) to N1 where N1, N2, . . . , Nm are randomly chosen routers,
c0 is the encrypted message and d0 is the encrypted route list, which is an
m+1 dimension vector (d0,1, d0,2, . . . , d0,m+1). More precisely, the encrypted
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Fig. 2. Klein bottle routing

message is c0 = EN1,N2,...,Nm,R(s) and the encrypted route list is d0 =
(d0,1, d0,2, . . . , d0,m+1) = (EN1(N2), EN1,N2(N3), . . . , EN1,N2...,Nm−1(Nm),
EN1,N2...,Nm(R), EN1,N2...,Nm,R(R)).



Klein Bottle Routing: An Alternative to Onion Routing and Mix Network 305

2. N1 decrypts d0,1 to find the next router’s identity, N2. Then N1 sends (c1, d1)
to N2 where c1 = RE(D1(c0)), d1 = (RE(D1(d0,2)), . . . , RE(D1(d0,m+1)),
C1) and C1 is a random ciphertext.

3. Each Ni receives (ci−1, di−1), decrypts di−1,1 to find the next router’s iden-
tity, Ni+1. Then Ni sends (ci, di) to Ni+1 where ci = RE(Di(ci−1)), di =
(RE(Di(di−1,2)), . . . , RE(Di(di−1,m+1)), Ci) and Ci is a random ciphertext.
Namely, each router decrypts the first ciphertext in the encrypted route list
to find the next router; cycles the encrypted route list one step forward; re-
places the former first ciphertext in the encrypted route list with a random
ciphertext and puts it in the end of the current encrypted route list; partially
decrypts, re-encrypts the rest of the packet and sends the packet to the next
node.

4. R decrypts the first ciphertext in the encrypted route list and finds its own
name. He thus knows that he is the receiver. He then decrypts cm and gets
s = DR(cm).

If the absolute length of each message’s route must be confidential, some
dummy routers can be added to the end of the initial route list when the sender
generates the packet. If public verifiability is desired, the following routing op-
erations with public proof and verification can be employed.

1. When a router receives a message packet, he usually does not route it im-
mediately. He waits until the number of message packets he holds is over a
threshold.

2. After the number of message packets he holds is over a threshold, the router
routes them in a random order. We call this routing mechanism batch rout-
ing2.

3. The router has to prove that in the last batch routing the messages en-
crypted in his output packets is a permutation of the messages encrypted in
his input packets. This is very similar to the proof of correct shuffling in a
mix network as both techniques employ batch operation, a random permuta-
tion of the packets and re-encryption masking. So the proof and verification
protocol to guarantee correct re-encryption and shuffling in existing mix net-
work schemes like [8] or [11] can be employed. To be used in Klein bottle
routing, the proof and verification protocol is slightly modified to suit El-
Gamal encryption with universal re-encryption and n-out-of-n distributed
decryption.

5 Analysis

Security of Klein bottle routing is analysed in this section.

Theorem 2. Klein bottle routing is isolatedly anonymous.
2 Even if public verifiability is not required, batch routing can be employed to prevent

a simple traffic analysis attack linking an input packet to a router to an immediately
following output packet from the same router.
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Lemma 1. An adversary chooses two ciphertexts c1 and c2 in the encryption
system employed in Klein bottle routing where he does not know the private keys
to decrypt these two messages. A challenger randomly selects i from {1, 2} and
calculates c′ = RE(Dj(ci)) where Dj() denotes partial decryption using Nj’s
private key3. Given c′, the adversary can output i with a probability no more
than 0.5 + ε and ε is negligible.

Proof: If Lemma 1 is incorrect, the adversary can output i with a probability
0.5 + ε and ε is not negligible in the game described in Lemma 1. Then the
adversary can use the following algorithm to break semantic security under re-
encryption in the ElGamal encryption algorithm with universal re-encryption
and n-out-of-n distributed decryption.

1. The adversary chooses ciphertexts e1 and e2 and calculates c1 = ENj (e1)
and c2 = ENj (e2).

2. The adversary sends c1 and c2 to the challenger.
3. The challenger randomly selects i from {1, 2} and calculate c′ = RE(Dj(ci))
4. c′ is given to the adversary while i is kept secret.
5. The adversary can output i with a probability 0.5+ε where ε is not negligible

as Lemma 1 is assumed to be incorrect.

Note that c′ = RE(Dj(ci)) = RE(Dj(ENj (ei))) = RE(ei). So using this algo-
rithm the adversary can output i given c′ without knowledge of the private keys
where c′ is the re-encryption of one of the two ciphertexts e1 and e2. This is
contradictory to Theorem 1. Therefore, Lemma 1 is correct. �

Proof of Theorem 2:
If Theorem 2 is incorrect, an adversary without help of the router can output
i with a probability 0.5 + ε and ε is not negligible in the following game: the
adversary chooses two input packets p1 and p2 for a router Nk, then the router
randomly selects i from {1, 2} and routes pi to an output packet p′.

Suppose pi contains (ci, di) and p′ contains (c′, d′) where ci and c′ are the
encrypted messages in the packets; di and d′ are the encrypted route lists; di =
(di,1, di,2, . . . , di,m+1) and d′ = (d′1, d

′
2, . . . , d

′
m+1). So at least one of the two

following events happen.

– Given c′, a re-encryption of either c1 or c2, the adversary outputs i such that
c′ is a re-encryption of ci with a probability 0.5 + ε and ε is not negligible.

– Given d′j−1 mod m+2, a re-encryption of either d1,j or d2,j where 1 ≤ j ≤
m + 1, the adversary outputs i such that d′j−1 mod m+2 is a re-encryption of
di,j with a probability 0.5 + ε and ε is not negligible.

Note that c′ = RE(Dk(ci)) and d′j−1 mod m+2 = RE(Dk(di,j)) and the adversary
does not know the private key to decrypt c1, c2, d1,j or d2,j as at least Nk does
not collude with him. So both these two events are contradictory to Lemma 1.
Therefore, Theorem 2 is correct. �

3 For example, Nj acts as the challenger.
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Theorem 2 illustrates that Klein bottle routing is anonymous if the decryption
key is unknown and traffic analysis is not performed. As n-out-of-n key sharing
is employed, no information about the decryption key is revealed unless all the
routers and the receiver collude. Although traffic analysis cannot be completely
prevented, it is not easy in Klein bottle routing. As dummy routers are added
to the end of each route list, each encrypted route list seems to have the largest
possible length. In Klein bottle routing, each router has three operations on a
message packet: partial decryption, re-encryption and route list cycling, none of
which changes the size of any message packet. So the size of any message packet
is constant when it travels in the Klein bottle routing network. Constant packet
size achieved in Klein bottle routing makes traffic analysis more difficult. The
traffic analysis attack based on monitoring packet size mentioned in Section 2
can be prevented in a Klein bottle routing based communication network. The
public proof and verification techniques in mix network [8,11] can be slightly
modified and employed to provide public verification of correct routing when
batch routing is employed. So Klein bottle routing is publicly verifiable. It is the
only known publicly verifiable anonymous routing scheme so far. Klein bottle
routing is simple and efficient as it avoids a difficult question in onion rout-
ing: keeping packet size unchangeable when decryption chain masking is used.
The cycling-route-list-based navigation mechanism guarantees efficient naviga-
tion (only one decryption and a small number of re-encryptions are needed to
find the next router) without revealing to the router its position on the route.

To prevent the interception-insertion attack in [2], we only need a small change
to the packet format: the encrypted message is c0 = EN1,N2,...,Nm−2,Nm,R(s) and
the encrypted route list is d0 = (d0,1, d0,2, . . . , d0,m+1) = (EN1(N2), EN2(N3),
. . . , EN1,N2...,Nm−3,Nm−1(Nm), EN1,N2...,Nm−2,Nm(R),
EN1,N2...,Nm−2,Nm,R(R)). Namely, one key is deleted from each encryption. Thus
there is a gap in the address list and the inserted address in the attack will
be trapped in the gap and cannot be decrypted. Therefore, the attack can be
prevented.

In Table 1, a comparison between Klein bottle routing and the existing anony-
mous channel implementations is provided. When computation cost is compared,
the number of full length exponentiations are counted. Although the concrete
number of exponentiations cannot be given in Table 1 due to lack of details in
some existing schemes, the cost of the schmemes in the table is similar. It is
clearly illustrated that Klein bottle routing overcomes the drawback of onion
routing and mix network. It is the only solution for general and flexible anony-
mous communication channels.

An interesting property of the new scheme is that it can be easily extended to
support public verifiability. Any exsting re-encryption based public verifiability
mechanism [12,11] can be easily employed to achieve public verifiability. So the
new scheme is the first technique to support public verifiability in free-route
anonymous networks. In a publicly verifiable free-route network, each router has
to give a public proof of validity of his routing periodicly, while an auditing
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authority checks the proof. As the proof is publicly verifiable, any dispute can
be publicly solved.

Table 1. Comparison

scheme general anonymity packet size based publicly cost
& flexible traffic analysis verifiable

onion routing [5,6] yes informal vulnerable no O(m)

onion routing [1] yes formal invulnerable no O(m)

onion routing [9] yes informal invulnerable no O(m)

mix network [11] no formal invulnerable yes O(m)

Klein bottle routing yes formal invulnerable supported O(m)

6 Conclusion

A new type of anonymous channel, Klein bottle routing, is designed in this
paper. It overcomes the drawbacks of onion routing and mix network and fills the
gap between them. Klein bottle routing is the only flexible general anonymous
channel implementation with public verifiability. It employs batch routing and
keeps the packet size unchangeable to avoid simple traffic analysis attacks.
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Abstract. At Eurocrypt 2005, Boneh-Boyen-Goh presented an inter-
esting and important construction of a constant size ciphertext HIBE.
The HIBE was proven to be secure in the selective-ID model. In this
paper, we present two variants of the BBG-HIBE secure in more general
security models. The first variant is proved to be secure in a general-
ization of the selective-ID model while the second variant is proved to
be secure in the full security model. Our constructions are not straight-
forward modifications of the BBG-HIBE. Several techniques have to be
suitably combined to obtain the required proofs.

1 Introduction

Identity based encryption (IBE) is a kind of public key encryption where the
public key can be any binary string. The corresponding private key is generated
by a private key generator (PKG) and securely transmitted to the proper entity.
IBE was introduced by Shamir [17] and an appropriate security model and con-
struction was given in [4]. The notion of IBE was extended to the notion of a
hierarchical IBE (HIBE) in [15,14]. A HIBE reduces the work load of the PKG
by allowing key generation to be delegated to lower levels.

Since the publication of [4], there have been several papers proposing construc-
tions of IBE and HIBE which are secure in different security models and under
different hardness assumptions. In a recent work, Boneh-Boyen-Goh [3] present
a HIBE where the ciphertext expansion consists of only two elliptic curve points
irrespective of the number of components in the corresponding identity. In other
HIBEs, the ciphertext expansion is proportional to the length of the identity.
The BBG-HIBE offers new and important applications for constructing other
cryptographic primitives. The security of the BBG-HIBE is based on a variant
of the DBDH-assumption called the wDBDHI-assumption. Further, the proof is
in the selective-ID (sID) model which was introduced in [8,9]. The sID-model is
significantly weaker than the full security model for HIBEs.

In this paper, we present two variants of the BBG-HIBE. The aim of these
variants is to be able to prove security in models which are stronger than the
sID-model. The first variant (called ccHIBE) is secure in a generalization of the

M.S. Rhee and B. Lee (Eds.): ICISC 2006, LNCS 4296, pp. 310–327, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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sID-model (called model M2) introduced in [11]. The second variant (called
FullccHIBE) is secure in the full model. The reduction for the full model security
is not tight. The security degradation is along the lines of the suggestion in [18,3].

Security in the stronger models is attained at the cost of increasing the size of
the public parameters and an increase in the computation time of the key gener-
ation and encryption. On the other hand, the ciphertext expansion as well as the
decryption efficiency remains the same as that in the BBG-HIBE. In a HIBE,
the entire private key for an identity is not necessarily required for decryption.
The portion of the private key required for decryption is called the decryption
subkey. The entire key is required for key delegation. In the BBG-HIBE, the
decryption subkey consists of only two group elements. This feature is retained
in the new constructions, even though the entire private key is longer than that
of the BBG-HIBE. The smallness of the decryption subkey is important, since it
might be required to load it onto a smart card. The growth of the entire private
key is less significant since key delegation is a relatively infrequent activity.

Constant size ciphertext HIBE is an important cryptographic primitive. To
some extent, the importance of the primitive justifies the variants that we
present. On the other hand, from a technical point of view, our variants are
not straightforward extensions of the BBG-HIBE. There are certain technical
subtleties which need to be taken care of for the proofs to go through. Below we
provide a description of some of these aspects.

In model M2, as in the sID-model, the adversary specifies a positive integer
τ ≤ h, which is the length of the challenge identity. For the ith (1 ≤ i ≤ τ)
level of the HIBE, the adversary commits to a set of values I∗i . It is not allowed
to query the key extraction oracle on an identity (v1, . . . , vj), where 1 ≤ j ≤ τ
and vi ∈ I∗i for each 1 ≤ i ≤ j. On the other hand, as the challenge identity,
the adversary submits (v∗1, . . . , v∗τ ) where v∗i ∈ I∗i for 1 ≤ i ≤ τ . The sID-model
is a special case of model M2. This can be seen by fixing each of the sets I∗
to be singleton sets. In general terms, in model M2, the adversary gains more
flexibility in choosing the challenge identity.

The BBG-HIBE has been proved to be secure in the sID-model. We augment
this HIBE to attain security in model M2. A similar construction has been
done for the BB-HIBE in [11]. The main technical novelty in the proof is the
use of a polynomial which in [3] is of degree one. The other problem is that
the security of the BBG-HIBE is based on the wDBDHI∗ problem. An instance
of this problem consists of a tuple (P, Q, aP, a2P, . . . , ahP, Z), where P, Q are
points from an appropriate elliptic curve group and Z is a suitable finite field
element. This instance is more complicated than an instance (P, aP, bP, cP, Z) of
DBDH. Properly combining the polynomial-based security proof from [11] with
the wDBDHI∗ problem is the main technical difficulty in the proof of security
in model M2.

The public parameters in the BBG-HIBE are (P, P1, P2, P3, Q1, . . . , Qh). In
extending the BBG-HIBE to attain security in model M2, we have to re-
place each Qi by a tuple (Qi,1, . . . , Qi,ni). The parameter P3 does not change.
The public parameters of the new HIBE are (P, P1, P2, P3,

−→
Q1, . . . ,

−→
Qh), where
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−→
Q i = (Qi,1, . . . , Qi,ni). The Q-parameters capture the dependence on the level
in both the BBG-HIBE and in its extension to M2. The parameters P1, P2, P3

do not depend on the number of levels of the HIBE.
On the other hand, when we modify the BBG-HIBE to attain security in the

full model, we need to change the parameter P3 to a tuple −→P 3 = (P3,1, . . . , P3,h).
The new −→

P 3 depends on the number of levels of the HIBE. The public pa-
rameters in this case are of the form (P, P1, P2,

−→
P 3,

−→
Q1, . . . ,

−→
Qh), where −→Q i =

(Qi,1, . . . , Qi,l).
It has been mentioned in [3] that the BBG-HIBE protocol can be modified

as in [18] to attain security in the full model. The change to P3 forms a part
of this modification, which was perhaps not anticipated in [3]. Adapting the
techniques of [18,10,16] to the more complicated wDBDHI∗ assumption is the
main technical difficulty in the proof of security in the full model.

2 Preliminaries

2.1 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups of same prime order p and G1 = 〈P 〉, where we
write G1 additively and G2 multiplicatively. A mapping e : G1 × G1 → G2 is
called a cryptographic bilinear map if it satisfies the following properties:

– Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry prop-
erty. Weil pairing [4] and Tate pairing [1,13] are examples of cryptographic bi-
linear maps.

The known examples of e() have G1 to be a group of Elliptic Curve (EC) points
and G2 to be a subgroup of a multiplicative group of a finite field. Hence, in
papers on pairing implementations [1,13], it is customary to write G1 additively
and G2 multiplicatively. On the other hand, some “pure” protocol papers [2,18]
write both G1 and G2 multiplicatively, though this is not true of the early
protocol papers [4,14]. Here we follow the first convention as it is closer to the
known examples.

2.2 Hardness Assumption

Weak Decisional Bilinear Diffie-Hellman Inversion (wDBDHI∗) Prob-
lem: This problem was introduced by Boneh-Boyen-Goh in [3]. An instance of
the h-wDBDHI∗ problem over 〈G1, G2, e()〉 consists of a tuple

〈P, Q, aP, a2P, . . . , ahP, Z〉

for some a ∈ ZZp and the task is to decide whether Z = e(P, Q)ah+1
or Z is

random.
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Let B be a probabilistic algorithm that takes as input an instance of the
h-wDBDHI∗ problem and outputs a bit. The advantage of B is defined to be

Advh-wDBDHI∗
B =

∣∣∣Pr[B(P, Q,
−→
Y , e(P, Q)ah+1

) = 1]− Pr[B(P, Q,
−→
Y , R) = 1]

∣∣∣
where −→Y = (aP, a2P, . . . ahP ) and R is a random element of G2. The probabil-
ities are calculated over the random choices of a ∈ ZZp and R ∈ G2 and also
over the random bits used by B. The quantity Advh-wDBDHI∗(t) denotes the max-
imum of Advh-wDBDHI∗

B where the maximum is taken over all adversaries running
in time at most t. We will say that the h-wDBDHI∗ problem is (ε, t)-hard if
Advh-wDBDHI∗(t) ≤ ε.

2.3 HIBE Protocol

A hierarchical identity based encryption (HIBE) scheme is specified by four
probabilistic algorithms: Setup, Key Generation, Encryption and Decryption.
An identity of depth j is a tuple (v1, . . . , vj), where each vi is an element of a
set I.

Setup: The input is a security parameter and the output consists of the public
parameters of the system along with the master key. The master key is known
only to the private key generator (PKG). The message space, ciphertext space
and the identity space are also defined during setup.

Key Generation: The task of this algorithm is to assign a private key dv for
an identity v of depth τ . It takes as input an identity v = (v1, . . . , vτ ) of depth
τ and the private key d|τ−1 corresponding to the identity v|τ−1 = (v1, . . . , vτ−1)
and returns dv. In the case τ = 1, the private key d|τ−1 is the master key of the
PKG and the key generation is done by the PKG. In the case τ > 1, the private
key corresponding to v = (v1, . . . , vτ ) is done by the entity whose identity is
v|τ−1 = (v1, . . . , vτ−1) and who has already obtained his/her private key d|τ−1.

Encryption: The encryption algorithm takes as input the identity v, the public
parameters of the PKG and a message from the message space and produces a
ciphertext in the cipher space.

Decryption: The decryption algorithm takes as input the ciphertext, the iden-
tity v under which encryption has been performed, the private key dv of the
corresponding identity v and the public parameters. It returns the message or
bad if the ciphertext is not valid.

2.4 Security Models

The security of a HIBE protocol is defined in terms of a game between an
adversary and a simulator. The full security model for IBE was introduced in [4]
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and the extension to HIBE was given in [14]. The weaker selective-ID model was
introduced in [8,9]. The security models M1 and M2 were introduced in [11].
We first describe the full security model and then point out the modifications
required for the sID-model and M2.

The adversary is given access to two oracles – the key extraction oracle and
the decryption oracle. The key extraction oracle takes as input an identity and
returns as output a random private key corresponding to the identity. The de-
cryption oracle takes as input an identity and a ciphertext and returns as output
either bad or the corresponding message. We assume that the adversary does not
make any pointless query, i.e., any query for which it can obtain the output by
itself. For example, the adversary does not query the decryption oracle with an
identity for which it has already obtained a private key. The game proceeds in
several phases.

Phase 1: In this phase, the adversary can query the key extraction oracle and
the decryption oracle in an adaptive manner.

Challenge: At the end of Phase 1, the adversary outputs an identity v∗ and two
equal length messages M0 and M1. A random bit b is chosen and the adversary
is given an encryption C∗ of Mb under the identity v∗. There is the natural
restriction that the adversary has not obtained a private key for any prefix of v∗

in Phase 1 and will also not do so in Phase 2.

Phase 2: In this phase, the adversary continues making key extraction and
decryption queries with the following additional restriction. It cannot query the
decryption oracle with the pair (v∗, C∗).

Guess: At the end of Phase 2, the adversary outputs a guess b′ of b.
The adversary wins the game if b = b′. The advantage of an adversary A in

attacking the HIBE scheme is defined as:

AdvHIBE
A = |Pr[(b = b′)]− 1/2| .

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the max-

imum is taken over all adversaries running in time at most t and making qC

queries to the decryption oracle and qID queries to the key-extraction oracle.
Any HIBE scheme secure against such an adversary is said to be secure against
chosen ciphertext attack (CCA-secure).

We may restrict the adversary from making any query to the decryption ora-
cle. A HIBE protocol secure against such an adversary is said to be secure against
chosen plaintext attacks (CPA-secure). AdvHIBE(t, q) in this context denotes the
maximum advantage where the maximum is taken over all adversaries running
in time at most t and making at most q queries to the key-extraction oracle.

There are generic [8,9,5] as well as non-generic [6] techniques for converting
a CPA-secure HIBE to a CCA-secure HIBE. In view of this, it is more con-
venient to initially construct a CPA-secure HIBE and then convert it into a
CCA-secure one.
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2.5 Selective-ID Model

The selective-ID model restricts the adversary’s behaviour. The main difference
is that in the adversarial game for the sID model, the adversary has to commit
to the challenge identity v∗ even before the protocol is setup. Thus, the actual
protocol setup in the game can depend on v∗, though undetectable by the ad-
versary. As before, in Phases 1 and 2, the adversary is not allowed to query the
key extraction oracle for a private key of any prefix of v∗. The other parts of the
game and the other restrictions are as in the case of full model security.

Requiring the adversary to commit to the challenge identity before setup is a
significant restriction. On the other hand, it is easier to obtain efficient protocols
with tight security reductions in the sID model.

2.6 Generalised Selective-ID Models

As mentioned earlier, two new security models, M1 and M2 have recently been
introduced in [11]. Here we describe only M2 since this is the model that we
require.

M2 generalises sID model in the following manner. Before the set-up of the
protocol, the adversary commits to sets of identities I∗1 , . . . , I∗τ , where 1 ≤ τ ≤
h and h is the maximum number of levels of the HIBE. Let |I∗i | = ni. The
adversary’s commitment fixes the length of the challenge identity to be τ . Also,
the set I∗i corresponds to the set of committed identities for the ith level of the
HIBE.

In Phases 1 and 2, the adversary is not allowed to query the key extraction
oracle on any identity (v1, . . . , vj) such that j ≤ τ and vi ∈ I∗i for all 1 ≤ i ≤ j.
The challenge identity is a tuple (v∗1, . . . , v

∗
τ ) where v∗i ∈ I∗i for all 1 ≤ i ≤ τ .

The model M2 is parametrized by h and a tuple (n1, . . . , nh) of positive
integers. This is explictly written as (h, n1, . . . , nh)-M2 model. This model is a
generalization of the sID-model which can be seen by fixing all the I∗i s to be
singleton sets. More specifically, (h, 1, . . . , 1)-M2 is the sID-model.

2.7 BBG-HIBE [3]

Let G1, G2 and e() be as defined in Section 2.1. The maximum depth of the
HIBE is a positive integer h. Identities at depth τ , with 1 ≤ τ ≤ h are of the
form (v1, . . . , vτ ) where each vi ∈ ZZ∗

p. Messages are elements of G2.

Setup: Choose a random α ∈ ZZp and set P1 = αP . Choose random elements
P2, P3, Q1, . . . , Qh ∈ G1. Set the public parameters to be

(P, P1, P2, P3, Q1, . . . , Qh)

while the master key is αP2.
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Key Generation: Given an identity v = (v1, . . . , vk) of depth k ≤ h, pick a
random r ∈ ZZp and output

dv = (αP2 + r(v1Q1 + . . . + vkQk + P3), rP, rQk+1 , . . . , rQh).

The private key for v can also be generated given the private key for v|k−1 as is
the requirement of a HIBE (see [3] for the details).

Encrypt: To encrypt M ∈ G2 under the identity v = (v1, . . . , vk) ∈ (ZZp)k, pick
a random s ∈ ZZp and output

(e(P1, P2)s ×M, sP, s(v1Q1 + . . . + vkQk + P3)) .

Decrypt: To decrypt (A, B, C) using the private key dv = (a0, a1, bk+1, . . . , bh),
compute

A× e(a1, C)
e(B, a0)

= M.

3 ccHIBE

Setup: Let 〈G1, G2, e〉 with G1 = 〈P 〉 be as in Section 2.1. The maximum depth
of the HIBE is a prespecified value denoted by h. Identities are of the form
v = (v1, . . . , vτ ) with 1 ≤ τ ≤ h and each vi ∈ ZZ∗

p. Messages are elements of G2.
Let (n1, . . . , nh) be a tuple of integers. Choose a random α ∈ ZZp and set

P1 = αP . Choose random points P2, P3 from G1. The public parameters are
(P, P1, P2, P3,

−→
Q1, . . . ,

−→
Qh) where −→Q i = (Qi,1, . . . , Qi,ni). Each Qi,j is randomly

chosen from G1. The master secret is αP2.

Notation: For ease of description, we define a notation.

Vi(y) = yniQi,ni + · · ·+ yQi,1.

Let v = (v1, . . . , vj) be an identity. By Vi we will denote Vi(vi).

Key Generation: Given an identity (v1, . . . , vτ ), pick a random r ∈ ZZp and
output

dv =

⎛⎝αP2 + r

⎛⎝P3 +
τ∑

j=1

Vj

⎞⎠ , rP, r
−→
Qτ+1, . . . , r

−→
Qh

⎞⎠
where r

−→
Q i = (rQi,1, . . . , rQi,ni). A private key at level τ consists of (2 +∑h

i=τ+1 ni) elements of G1. Among these, only the first two are required in
decryption, the rest are used to generate a private key for the next level as
follows:

Let a private key for (v1, . . . , vτ−1) be (A′
0, A

′
1,
−→
B

′
τ , . . . ,

−→
B

′
h), where

A′
0 = αP2 + r′

⎛⎝τ−1∑
j=1

Vj + P3

⎞⎠ ,
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A′
1 = r′P , and for τ ≤ j ≤ h, −→B ′

j = (r′Qj,1, . . . , r
′Qj,nj ). Let B′

j,k = r′Qj,k. Pick
a random r∗ ∈ ZZp and compute dv = (A0, A1,

−→
B τ+1, . . . ,

−→
B h) where

A0 = A′
0 +

∑nτ

i=1 vi
τB′

τ,i + r∗
(∑τ

j=1 Vj + P3

)
,

A1 = A′
1 + r∗P,

Bτ+1 = −→
B

′
τ+1 + r∗−→Q τ+1,

. . . ,

Bh = −→
B

′
h + r∗−→Qh.

If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vτ ).

Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vτ ), pick a random
s ∈ ZZp and output⎛⎝e(P1, P2)s ×M, sP, s

⎛⎝P3 +
τ∑

j=1

Vj

⎞⎠⎞⎠ .

Decrypt: To decrypt (A, B, C) for v = (v1, . . . , vτ ) using the private key dv =
(d0, d1, . . .), compute

A× e(d1, C)
e(B, d0)

= e(P1, P2)s ×M ×
e
(
rP, s

(
P3 +

∑τ
j=1 Vj

))
e
(
sP, αP2 + r

(
P3 +

∑τ
j=1 Vj

)) = M.

Note: Here ccHIBE is parametrized by (n1, . . . , nh) and (h, n1, . . . , nh)-ccHIBE
is used to explicitly denote this parametrization.

3.1 Security Reduction for ccHIBE

We wish to show that ccHIBE is secure in model M2. Recall that Adv is used
to denote the advantage of an adversary in attacking a HIBE. By the nota-
tion Adv

(h,n1,...,nh)-ccHIBE

(h,n′
1,...,n′

h)-M2
(t, q) we will denote the maximum advantage of an ad-

versary which runs in time t and makes q key-extraction queries in attacking
(h, n1, . . . , nh)-ccHIBE in the model (h, n′

1, . . . , n
′
h)-M2.

Theorem 1. Let h, n1, . . . , nh, q be positive integers and n′
1, . . . , n

′
h be another

set of positive integers with n′
i ≤ ni for 1 ≤ i ≤ h. Then

Adv
(h,n1,...,nh)-ccHIBE

(h,n′
1,...,n′

h)-M2
(t, q) ≤ Advh-wDBDHI∗(t + O(σnq))

where n =
∑h

i=1 ni and σ is the time for a scalar multiplication in G1.

The proof is provided in Appendix A.
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4 FullccHIBE

In this section, we consider the problem of constructing a constant size ciphertext
HIBE which is secure in the full model. Our construction is based on the IBE
scheme given by Waters [18] and its generalization given in [10,16]. We note that
the possibility of obtaining such a constant size ciphertext HIBE based on the
work in [18] was mentioned as a passing remark in [3] though no details were
provided.

Let the maximum height of the HIBE be h. Any identity v at height k ≤ h is
represented by a k-tuple, v = (v1, . . . , vk) where each vi = (vi,1, . . . , vi,l) and vi,j

is an (n/l)-bit string. In other words, an n-bit identity at each level is represented
as l blocks each of length n/l bits. This manner of representing identities is used
in [10,16] which generalizes the construction in [18], where l = n.

In our construction, the public parameter size depends on both the size pa-
rameter l and the height h of the HIBE. If we decrease the value of l, the public
parameter size also decreases. However, the security of the HIBE degrades as l
decreases. Hence, the decrease in the size of the public parameters comes at an
increase in the security degradation. This trade-off can be converted into a trade-
off between the memory required to store the public parameters and the time
required for the different operations. This space/time trade-off has been studied
in details in [10]. A similar space/time trade-off also holds for the present case.

4.1 Construction

Setup: Choose a random secret α ∈ ZZp and set P1 = αP . Randomly choose P2;
an h-length vector −→P3 = (P3,1, . . . , P3,h); and h many l-length vectors −→U1, . . . ,

−→
Uh

from G1, where each −→Uj = (Uj,1, . . . , Uj,l). The public parameters consist of the
elements

〈P, P1, P2,
−→
P3,
−→
U1, . . . ,

−→
Uh〉

while the master secret is αP2. Note that, for each level i of the HIBE we have
l + 1 elements i.e., P3,i and −→Ui.

Notation: Let vj be an n-bit string written as vj = (vj,1, . . . , vj,l), where each
vj,i is an (n/l)-bit string. Define

Vj = P3,j +
l∑

i=1

vj,iUj,i.

The modularity introduced by this notation is useful in describing the protocol.

Key Generation: Given an identity v = (v1, . . . , vk) for k ≤ h, this algorithm
generates the private key dv of v as follows. Choose a random element r ∈ ZZp

and output

dv =

⎛⎝xP2 + r

⎛⎝ k∑
j=1

Vj

⎞⎠ , rP, rP3,k+1, . . . , rP3,h, r
−→
U k+1, . . . , r

−→
U h

⎞⎠
where r

−→
Uj = (rUj,1, . . . , rUj,l).
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The private key for v can also be generated given the private key for any of its
ancestors as is the general requirement for a HIBE scheme. Let the private key
for (v1, . . . , vk−1) be (d′0, d

′
1, a

′
k, . . . , a′

h,
−→
b′ k, . . . ,

−→
b′ h). Pick a random r′ ∈ ZZp

and then dv = (d0, d1, ak+1, . . . , ah,
−→
b k+1, . . . ,

−→
b h), where

d0 = d′0 + a′
k +

∑l
i=1 vk,ibk,i + r′

∑k
j=1 Vj ;

d1 = d′1 + r′P ;

and for k + 1 ≤ j ≤ h

aj = a′
j + r′P3,j ;

−→
bj =

−→
b′j + r′−→Uj .

Encrypt: To encrypt a message M ∈ G2 under the public key v = (v1, . . . , vk)
choose a random s ∈ ZZp and then the cipher text is

C =

⎛⎝e(P1, P2)s ×M, sP, s

k∑
j=1

Vj

⎞⎠
where Vj is as defined in Key Generation part.

Decrypt: Let (A, B, C) be a ciphertext and v = v1, . . . , vk be the corresponding
identity. Then we decrypt using dv = (d0, d1, . . .) as

A× e(d1, C)
e(B, d0)

= M.

Note that, only the first two components of the private key are required for the
decryption.

4.2 Security

Security of the FullccHIBE scheme described above can be reduced from the
hardness of the h-wDBDHI∗ problem. The reduction combines ideas from the
proof in Section 3.1 with ideas from the proofs in [18] and [10,16]. In particular,
the general idea of tackling adaptive adversaries including an “artificial abort”
stage is from [18], the modification for the case of 1 < l ≤ n is from [10,16],
whereas the idea of the simulation of the key-extraction queries is from the proof
in Section 3.1 and is based on algebraic techniques originally used by Boneh and
Boyen [2]. To explain this idea further, the simulator in the proof will abort on
certain queries made by the adversary and also on certain challenge identities.
The idea of controlling this abort strategy is based on the technique from [18].
On the other hand, if on a certain query, the simulator does not abort, then the
technique for the actual simulation of the key-extraction oracle is similar to the
technique in Section 3.1.

The challenge generation is a bit different due to the fact that in FullccHIBE
level j of the HIBE has a parameter P3,j , whereas in ccHIBE, there is one param-
eter P3 for all levels of the HIBE. In case of BBG-HIBE or its augmented version
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ccHIBE, the height of the target identity is fixed in the commitment stage itself.
Based on this information the simulator sets up the HIBE and the effect of the
committed identity tuple for BBG-HIBE or the sets of committed identities in
ccHIBE is assimilated in P3. In case of FullccHIBE there is no prior commitment
stage in the reduction and the number of levels in the target identity may vary
between 1 and h. This is the intuitive reason of why we need different P3,i for
each level of the HIBE.

Theorem 2. The FullccHIBE protocol is (ε, t, q) CPA-secure assuming that the
(t′, ε′, h)-wDBDHI∗ assumption holds, where

ε ≤ 2ε′/λ;
t′ = t + O(σq) + O(ε−2 ln(ε−1)λ−1 ln(λ−1)); and
λ = 1/(2(4lq2n/l)h).

We assume 2q > 2n/l.

The proof is given in Appendix B.

5 Conclusion

In this paper, we have presented two variants of the BBG-HIBE, both of which
have constant size ciphertext expansion. The first variant is proved to be secure
in a generalization of the selective-ID model while the second variant is secure
in the full model. We combine techniques from several papers along with the
BBG-HIBE to obtain the new constructions and their proofs.
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A Proof of Theorem 1

Proof: We show that an adversary playing the (h, n′
1, . . . , n

′
h)-M2 game against

a simulator for the HIBE (h, n1, . . . , nh)-ccHIBE can be converted into an algo-
rithm for the h-wDBDHI∗ problem.

An instance of the h-wDBDHI∗ problem is a tuple 〈P, Q, Y1, . . . , Yh, T 〉 where
Yi = αiP for some random α ∈ ZZ∗

p and T is either equal to e(P, Q)αh+1
or a

random element of G2.
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Adversary’s commitment: The adversary outputs I∗1 , . . . , I∗τ where 1 ≤ τ ≤ h
and each set I∗i is a set of cardinality n′

i.

Setup: Define polynomials F1(x), . . . , Fh(x) as follows. For 1 ≤ i ≤ τ , define

Fi(x) =
∏
v∈I∗

i

(x− v)

= xn′
i + ai,n′

i−1x
n′

i−1 + . . . + ai,1x + ai,0.

For τ + 1 ≤ i ≤ h, define Fi(x) = x (and so Fi(x) �≡ 0 mod p for any x ∈ ZZ∗
p).

For 1 ≤ i ≤ τ , define ai,n′
i

= 1 and ai,ni = · · · = ai,n′
i+1 = 0; for τ + 1 ≤ i ≤ h,

set n′
i = 1, ai,0 = 0, ai,1 = 1 and ai,2 = · · · = ai,ni = 0.

For 1 ≤ i ≤ h, define J1(x), . . . , Jh(x) in the following manner.

Ji(x) = bi,nix
ni + bi,ni−1x

ni−1 + . . . + bi,1x + bi,0

where bi,j are random elements of ZZp. Note that Fi(x) is of degree n′
i while

Ji(x) is of degree ni.
The public parameters are defined as follows. Choose a random β ∈ ZZp.

1. P1 = Y1 = αP ;
2. P2 = Yh + βP = (αh + β)P ;
3. P3 =

∑h
i=1(bi,0P + ai,0Yh−i+1); and

4. for 1 ≤ i ≤ h, 1 ≤ j ≤ ni,
Qi,j = bi,jP + ai,jYh−i+1;

The public parameters are (P, P1, P2, P3,
−→
Q1, . . . ,

−→
Qh); −→Q i = (Qi,1, . . . , Qi,ni).

The distribution of the public parameters is as expected by the adversary. The
corresponding master key αP2 = Yh+1 + βY1 is unknown to B.

Phase 1: Suppose a key extraction query is made on v = (v1, . . . , vj) for j ≤ h.
(Note that j may be less than, equal to or greater than τ .)

If j ≤ τ , then there must be a k ≤ j such that Fk(vk) �≡ 0 mod p, as otherwise
vi ∈ I∗i for each i ∈ {1, . . . , j} – which is not allowed by the rules of M2. In case
j > τ , it is possible that F1(v1) = · · · = Fτ (vτ ) = 0. Then, since vτ+1 ∈ ZZ∗

P and
Fτ+1(x) = x, we have Fτ+1(vτ+1) �≡ 0 mod p.

Thus, in all cases, there is a k such that Fk(vk) �≡ 0 mod p. We choose k
to be the first such value in the range {1, . . . , j} and so for i < k, we have
Fi(vi) ≡ 0 mod p. We next show that it is possible to construct a valid private
key for v from what is known to the adversary.

Recall that Yi = αiP and hence Yi1+i2 = αi1Yi2 . Choose a random r in ZZp

and define

A1 = βY1 −
1

Fk(vk)

(
j∑

i=1

Ji(vi)Yk

)
+ r

(
j∑

i=1

(Fi(vi)Yh−i+1 + Ji(vi)P )

)
;

A2 = − 1
Fk(vk)

∑
i∈{1,...,j}\{k}

Fi(vi)Yh+k−i+1;
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A3 =
h∑

i=j+1

(
r(bi,0P + ai,0Yh−i+1)−

1
Fk(vk)

(bi,0Yk + ai,0Yh+k−i+1)
)

.

It is possible to compute A1, A2 and A3 from what is known to the simulator.
First note that Fk(vk) �≡ 0 mod p and hence 1/Fk(vk) is well defined. The val-
ues Fi(vi), Ji(vi) and P, Y1, . . . , Yh are known to the simulator. Hence, A1 and
A3 can be computed directly. In A2, the values Yh+2, . . . , Yh+k are involved.
However, the corresponding coefficients are Fk−1(vk−1), . . . , F1(v1). By defini-
tion, k is the first integer in the set {1, . . . , j} such that Fk(vk) �≡ 0 mod p.
Hence, Fk−1(vk−1) ≡ · · · ≡ F1(v1) ≡ 0 mod p and consequently, the values
Yh+2, . . . , Yh+k are not required by the simulator in computing A2.

The first component d0 of the private key dv for v is obtained as d0 = A1 +
A2 + A3. We have

d0 = A1 + A2 + A3

= ±Yh+1 + A1 + A2 + A3

= Yh+1 + βY1 − αk Fk(vk)
Fk(vk)

Yh−k+1 + (A1 − βY1) + A2 + A3

= αP2 +
(

r − αk

Fk(vk)

)
A

where

A =
j∑

i=1

(Ji(vi)P + Fi(vi)Yh−i+1) +
h∑

i=j+1

(bi,0P + ai,0Yh−i+1) .

The last equality is obtained by substituting the values of A1, A2 and A3 and per-
forming a lengthy algebraic simplification. The details are a bit tedious though
not too difficult and hence we omit them. Now

Ji(vi)P + Fi(vi)Yh−i+1 =
ni∑
l=1

bi,lv
l
iP +

ni∑
l=1

ai,lv
l
iYh−i+1 + bi,0P + ai,0Yh−i+1

=
ni∑
l=1

vl
iQi,l + bi,0P + ai,0Yh−i+1

= Vi + bi,0P + ai,0Yh−i+1.

Hence,

A =
j∑

i=1

Vi +
h∑

i=1

(bi,0P + ai,0Yh−i+1)

= P3 +
j∑

i=1

Vi.
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This shows

d0 = αP2 + r′
(

P3 +
j∑

i=1

Vi

)
where r̃ = r − (αk/Fk(vk)). Since r is random, so is r̃ and hence d0 is properly
formed. Also,

d1 = − 1
Fk(vk)

Yk + rP = − αk

Fk(vk)
P + rP = r̃P

which is as required. To form a valid private key r̃
−→
Q i has to be computed for

j < i ≤ h. This is done as follows.

r̃Qi,l =
(

r − αk

Fk(vk)

)
(bi,lP + ai,lYh−i+1)

= r(bi,lP + ai,lYh−i+1)−
1

Fk(vk)
(bi,lYk + ai,lYh+k−i+1) .

Thus, we get
dv =

(
d0, d1, r̃

−→
Q j+1, . . . , r̃

−→
Qh

)
.

Challenge: After completion of Phase 1, the adversary outputs two messages
M0, M1 ∈ G2 together with a target identity v∗ = (v∗1, . . . , v

∗
τ ) on which it wishes

to be challenged. The constraint is that each v∗i ∈ I∗i and hence Fi(v∗i ) ≡ 0 mod p
for 1 ≤ i ≤ τ . If τ < h, then aj,0 = 0 for τ < j ≤ h. The simulator picks a
random b ∈ {0, 1} and constructs the challenge ciphertext(

Mb × T × e(Y1, βQ), Q,

(
τ∑

i=1

Ji(v∗i ) +
h∑

i=τ+1

bi,0

)
Q

)
.

Suppose, Q = γP for some unknown γ ∈ ZZp. Using the fact Fi(v∗i ) ≡ 0 mod p
for 1 ≤ i ≤ τ and ai,0 = 0 for τ + 1 ≤ i ≤ h, we have(

τ∑
i=1

Ji(v∗i ) +
h∑

i=τ+1

bi,0

)
Q = γ

(
τ∑

i=1

Ji(v∗i )P + Fi(v∗i )Yh−i+1

+
h∑

i=τ+1

(ai,0Yh−i+1 + bi,0P )

)

= γ

(
P3 +

τ∑
i=1

Vi

)
.

If the input provided to the simulator is a true h-wDBDHI∗ tuple, i.e., T =
e(P, Q)(α

h+1), then
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T × e(Y1, βQ) = e(P, Q)(α
h+1) × e(Y1, βQ)

= e(Yh, Q)α × e(βP, Q)α

= e(Yh + βP, Q)α

= e(P2, γP )α

= e(P1, P2)γ .

So, the challenge ciphertext⎛⎝Mb × e(P1, P2)γ , γP, γ

⎛⎝ τ∑
j=1

Vj + P3

⎞⎠⎞⎠
is a valid encryption of Mb under v∗ = (v∗1, . . . , v∗τ ). On the other hand, when T
is random, the first component of the challenge ciphertext is a random element
of G2 and provides no information to the adversary.

Phase 2: This is similar to Phase 1.

Guess: Finally, the adversary outputs its guess b′ ∈ {0, 1}. The simulator outputs
1⊕ b⊕ b′.

This gives us the required bound on the advantage of the adversary in breaking
the HIBE protocol. ��

B Proof of Theorem 2

Proof: Suppose A is a (t, q)-CPA adversary for the h-HIBE, then we construct
an algorithm B that solves the h-wDBDHI∗ problem. B takes as input a tuple
〈P, Q, Y1, . . . , Yh, T 〉 where Yi = αiP for some random α ∈ ZZ∗

p and T is either
equal to e(P, Q)αh+1

or is a random element of G2. We define the following game
between B and A.

Setup: B chooses random u1, . . . , uh ∈ ZZm and l-length vectors −→x1, . . . ,−→xh with
entries from ZZm. Here m = 2 max(2q, 2n/l) = 4q. Similarly, it chooses random
v1, . . . , vh ∈ ZZp and l-length vectors −→y1, . . . ,−→yh from ZZp. It further chooses
kj for 1 ≤ j ≤ h randomly from {0, . . . , μl}, where μl = l(N1/l − 1)}. Let,
vj = (vj,1, . . . , vj,l). For 1 ≤ j ≤ h, it then defines the functions:

Fj(vj) = p + mkj − uj −
l∑

i=1

xj,ivj,i

Jj(vj) = vj +
l∑

i=1

yj,ivj,i

Kj(vj) =
{

0 if uj +
∑l

i=1 xj,ivj,i ≡ 0 mod m
1 otherwise
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These functions originate in the work of Waters [18] and have later been used
in [10]. The current definitions extend the definitions given in [10] for IBE to
the case of HIBE. These functions are used to control the abort strategy by the
simulator.

Next, B assigns P1 = Y1, P2 = Yh + yP , P3,j = (p + mkj − uj)Yh−j+1 + vjP
for 1 ≤ j ≤ h and Uj,i = −xj,iYh−j+1 + yj,iP for 1 ≤ j ≤ h and 1 ≤ i ≤ l. It
provides A the public parameters 〈P, P1, P2,

−→
P 3,

−→
U 1, . . . ,

−→
U h〉. Everything else

is internal to B. Note that from A’s point of view the distribution of the public
parameters is identical to the distribution of the public parameters in an actual
setup. The master secret αP2 is unknown to B.

Using the definition of the public parameters it is possible to show that

Vj = P3,j +
l∑

i=1

vj,iUj,i = Fj(vj)Yh−j+1 + Jj(vj)P.

As in the proof of Theorem 1, this fact is crucial to the answering key-extraction
queries and challenge generation.

Phase 1: Suppose A asks for the private key corresponding to an identity v =
(v1, . . . , vu), for u ≤ h. B first checks whether there exists a j ∈ {1, . . . , u}
such that Kj(vj) �= 0. It aborts and outputs a random bit if there is no such
j. Otherwise, it answers the query in a manner similar to that in the proof of
Theorem 1.
B chooses r randomly from ZZp and computes

d0|j = − Jj(vj)
Fj(vj)

Yj + yY1 + r(Fj(vj)Yh−j+1 + Jj(vj)P );

d1 =
−1

Fj(vj)
Yj + rP.

It is standard to show that d0|j = αP2 + r̃Vj and d1 = r̃P , where r̃ = r− αj

F (Ij ,kj)
.

As in the proof of Theorem 1, it is possible to show that B can compute r̃Vi for
any i ∈ {1, . . . , u} \ {j}; and r̃P3,k, r̃

−→
Uk for u < k ≤ h. The simulator computes

d0 = d0|j +
∑

i∈{1,...,u}\{j} r̃Vi. A is provided the private key corresponding to

v as dv =
(
d0, d1, r̃P3,u+1, . . . , r̃P3,h, r̃

−→
U u+1, . . . , r̃

−→
U h

)
. Note that dv is a valid

private key for v following the proper distribution. B will be able to generate this
dv as long as there is a j ∈ {1, . . . , u} such that Fj(vj) �≡ 0 for which it suffices
to have Kj(vj) �= 0.

Challenge: A submits two messages M0, M1 ∈ G2 together with a challenge
identity v∗ = (v∗1, . . . , v∗τ ), τ ≤ h on which it wants to be challenged. B aborts
and outputs a random bit, if Fj(v∗j ) �≡ 0 for any j ∈ {1, . . . , τ}. Otherwise, B
chooses a random bit γ ∈ {0, 1} and gives A the tuple

CT =

⎛⎝T × e(Y1, yQ)×Mγ , Q,
τ∑

j=1

Jj(v∗j )Q

⎞⎠ .
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If 〈P, Q, Y1, . . . , Yh, T 〉 given to B is a valid h-wDBDHI∗ tuple, i.e., T =
e(P, Q)αh+1

then CT is a valid encryption for Mγ . Suppose Q = cP for some
unknown c ∈ ZZp. Then the first component of CT can be seen to be e(P1, P2)c.
Further, using Fj(v∗j ) ≡ 0 mod p it can be shown that Jj(v∗j )Q = cVj . The cor-
rectness of the third component of CT follows from this fact. If T is a random
element of G2, CT gives no information about B’s choice of γ.

Phase 2: Similar to Phase 1, with the restriction that A cannot ask for the
private key of v∗ or any of its ancestors.

Guess: A outputs a guess γ′ of γ.
A lower bound λ on the probability of aborting upto this stage is the following.

λ =
1

2(4lq2n/l)h
.

Waters [18] obtains a similar bound (for the case l = n) in the context of an
IBE secure in the full model under the DBDH assumption. In the same paper,
Waters had suggested a construction for HIBE where new public parameters are
generated for each level of the HIBE. Generating new public parameters for each
level of the HIBE simplifies the probability analysis for the lower bound on the
probability of abort.

The security of FullccHIBE is based on the h-wDBDHI∗ problem which is
obtained by modifying the BBG-HIBE. For each level of the HIBE we have
separate public parameters P3,i and (Ui,1, . . . , Ui,l). This makes it possible to
easily apply the reasoning of Waters leading to the above mentioned lower bound.

At this point, we have to also use the technique of “artificial abort” employed
by Waters [18]. The idea is that the probability of aborting upto this is not
independent of the adversarial queries. The idea of the artificial abort technique
is to allow the simulator to sample the transcript of queries it obtained from
the adversary and on certain conditions abort and output a random bit. This
increases the total probability of abort and makes it almost equal for all adver-
sarial inputs. This helps in the probability analysis. The effect of sampling the
transcript is to increase the runtime of the simulator. See [18] for the details.
Incorporating the probability analysis of Waters into the present situation in a
straightforward manner we obtain the required result. ��
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1 Introduction

Nowadays, numerous internet services, such as internet banking, home trading,
on-line payments, electronic commercial services, and others, rely on PKI to
authenticate each user.

Due to the ease of key management, it is frequent that an individual user
uses only one certified private/public key pair and its corresponding certificate;
they tend to be used to all on-line services. However, this causes a potential
security problem: first, the probability of the private key exposure is increased.
For instance, if the private key is used on the insecure computing environment
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key. Moreover, many other on-line services, which rely on this plundered private
key for authentication, can be compromised.

It can be a solution for the above problem to use a temporal secondary pri-
vate key on behalf of the primary private key. Since the right of the temporal
secondary key can be limited only to a specific purpose and its validity period
can be limited, the damage of the key exposure is reduced.

To accomplish the right delegation from the primary private key to the sec-
ondary private key, it can be considered to employ the delegation-by-certificate
method [5,13]. In general, the delegation-by-certificate is useful to delegate an
entity’s signing right to another entity. In delegation-by-certificate, a user, called
as a right grantor, delegates a restricted amount of authority of his/her private
key to that of another user, called as a right grantee, by signing a delegation
certificate. The delegation certificate is attached to the right grantee’s signature
when the right grantee signs a document on behalf of the right grantor.

Unfortunately, the delegation-by-certificate is not appropriate to authorize the
secondary private key. As has been stated in [7], because the delegated right from
the primary private key to the secondary is a personalized right, the propagation
of the delegated right should be limited. For example, suppose that a user who
has a right to access the on-line music service and this right is only bound to the
user. If the user generates many secondary private keys and their appropriate
certificates, and sends them to other users, e. g. his/her friends or families; they
can access the on-line music service because their identities cannot be revealed
from the secondary private keys.

Thus, the self-delegation concept has been proposed to provide a way to limit
the propagation of the delegated right as well as to reduce the damage caused by
the key exposure [7]. In self-delegation, a secondary private key which has a special
attribute is used to prevent the unlimited propagation of the delegated right.

In 2003, Boldyreva et al. have brought the self-delegation concept into the
proxy signature and have proposed a proxy signature scheme providing the self-
delegation facility (PSsd) [1]. Later, Malkin et al. [10] found the security flaws
of the Boldyreva et al’s scheme and have proposed a new PSsd scheme based on
the key insulated signature scheme (KI) [3,4]2.

However, because Malkin et al. designed the PSsd scheme to show a theoretical
equivalence between PSsd and KI, it has several drawbacks to be used practi-
cally. The first problem is that each user can’t generate his/her private/public
key pair without the help of the central trusted secure device, which acts as a
key generation center. In Malkin et al’s scheme, there exists a global secret key3.

2 This is a part of their contributions. The main contribution of their work is to define
a new secure hierarchical model of the proxy signature and to show the relations
between the proxy signature and the key-evolving signatures.

3 In Theorem 2 in [11], the master key and the first phase signing key of KI are used for
all users’ private key generation. Only with these two information, all users’ private
key can be recovered. Thus, users should not access these information explicitly.
This is the reason of our opinion that the construction in [11] should use the trusted
device.
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Since the trusted secure device should participate in the key generation of each
user with this global secret key, the scalability of the scheme is severely degraded.
Besides, the existence of the trusted secure device causes the second problem
that this trusted secure device can be a critical target of adversary: unlike the
certificate authority, this trusted secure device has a global secret key with which
all users’ private keys can be recovered.

We address these problems and construct a new proxy signature scheme pro-
viding self-delegation. In the proposed scheme, there does not exist a global
secret key to generate the private/public key of each user. This removes a single
critical target of the adversary. Besides, all users can generate their key pair
independently. Thus, the proposed scheme is more scalable than the previous
one.

The algorithms in the proposed scheme are based on those of the forward
secure signature scheme by G. Itkis and L. Reyzin [9]. We define the security
of the proposed scheme and show the security of the proposed scheme based on
the modified version of the strong RSA assumption [9] using the random oracle
model [2].

The rest of this paper has the following organization. In Section 2, the pre-
liminaries are provided. In Section 3, we provide the proposed PSsd scheme. We
provide the security and performance analysis of the proposed scheme in Section
4 and Section 5 respectively. In Section 6, we discuss the relation between Malkin
et al’s work [10,11] and the proposed scheme.

2 Preliminary

In this section, the preliminaries are provided. The first subsection gives an
overview of the proposed PSsd scheme. The second subsection provides the se-
curity requirements of the PSsd scheme.

2.1 Overview of the Proposed PSsd Scheme

An overview of the proposed PSsd scheme is informally described. We first ex-
plain the participants of the PSsd scheme. There are 4 types of participants:

– Users: They own devices, many private keys, and corresponding only one
public key respectively. They store their private keys in their main device
initially. The private keys can be classified as a signing key and delegation
key, whose descriptions are shown below.

– Right grantor devices (OD): They delegate their signing right to ED.
They sends ED a proxy for ED to exercise the delegated signing right using
them. In self-delegation case, the proxy contains the signed certificate and a
number of private keys for ED. On the other hand, the proxy only includes
the signed certificate in non-self-delegation case.
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– Right grantee devices (ED): They receive a proxy from OD and proxy-sign
a message on behalf of OD.

– Verifiers: The ones who verify the proxy signature. It is assumed that they
have the authentic public key which corresponds to the proxy signature to
be verified.

Next, we classify the private keys according to their usage.

– Signing key: This is to be used for a device to sign a message. The proxy
signing key is included in this type.

– Delegation key: OD keeps the delegation keys until OD sends it to ED
during the self-delegation. ED uses one of the delegation keys as a proxy
signing key.

The proposed PSsd scheme has five algorithms. The description of each algo-
rithm is given below.

Private
key (1)

Private
key (2)

Private
key (3)

User’s main device

Private
key (4)

Public key

Key Generation

Signing Key

Delegation Keys (used for 
self-delegation)

Private
key (1)

Private
key (2)

User’s main device 
(right grantor device)

User’s sub device 
(right grantee device)

Proxy generation & verification

Cannot make Private key (3) and (4) 

w : description of 
signing right bound to 
private key (3) and (4)

SignA(B): signing 
algorithm

Private
key (3)

Private
key (4)

w,Signprivate key(1)(w||3||4)

(Certificate)
Proxy

Is certificate 
valid? (1)

Are private 
keys valid? (2)

Fig. 1. Overview of key generation, proxy generation, and verification algorithms

• Key generation: This algorithm is used to generate an individual user’s
private keys and the corresponding public key. All private keys should be dis-
tinguishable. The upside of Figure 1 shows an example of the result of key
generation algorithm. After the key generation, the public key is published.

• Proxy generation: To delegate a signing right, OD generates a proxy to send
it to ED. This algorithm includes both self-delegation and non-self-delegation
case. For non-self-delegation, OD simply generates a signed certificate which
certifies the delegated signing right, and sends it, which is the proxy in this
case, to ED4. On the other hand, to perform the self-delegation, OD sends not
only the certificate but also one or some of delegation keys for ED to exercise the
delegated signing right with them. In this case, the proxy contains the delegation

4 It is exactly the same as the delegation-by-certificate case [1,12]. In non-self-
delegation case, the delegation propagation problem is not happened since the iden-
tity of ED’s owner is revealed by the public key.
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keys as well as the certificate. After a self-delegation, OD removes the delegation
keys that are sent so that they cannot be recovered even if OD is compromised.
The downside of Figure 1 shows the self-delegation case.

• Proxy verification: After receiving the proxy, ED verifies the certificate in
the proxy with the public key of the OD. If the certificate is shown to be invalid,
ED cannot exercise the delegated signing right. In self-delegation case, the del-
egation keys are included in the proxy. These delegation keys are also verified.
After verification, one of them is used as a proxy signing key and the others are
remained to the delegation keys for ED’s later delegation.5 In non-self-delegation
case, the proxy signing key is the signing key of ED. The delegated signing right
is controlled by the description of signing right in the certificate.

• Proxy signature generation: This algorithm is used to generate a proxy
signature with ED’s proxy signing key. The proxy signature includes the certifi-
cates that are received from OD as a part of the proxy.

• Proxy signature verification:The verifier runs this algorithm to verify the
proxy signature is valid. The verifier should have the public keys of all users
which own all the devices that participate in generating the proxy signature,
for example, after a device D1, which is owned by a user U1, delegates a sign-
ing right to D2 which also belongs to U1, D2 can also delegate its delegated
signing right to another device D3 which belongs to another user U2. In this
case, the verifier have both U1’s and U2’s public key to verify the D3’s proxy
signature.

2.2 Security Requirements of the Proposed PSsd Scheme

The security requirements of PSsd are as follows. These requirements include that
of the ordinary proxy signature by Mambo et al [12]. This is informal description
but it may help understanding why the formal security model at Section 4 is
suggested.

– Verifiability: A verifier can be convinced of the OD’s agreement by verifying
the proxy signature.

– Unforgeability: Only the designated ED can generate a valid proxy signature.
– Non-repudiation: ED cannot repudiate a valid proxy signature generated by

itself.
– Limited Propagation: It should be provided how to limit the propagation of

the self-delegation.
– Forward Security: After the self-delegation, the proxy signing key of the ED

should be difficult to derive from the private key of OD.
– Backward Security: It should be difficult to derive the private key of OD

from the delegated proxy signing key of ED.

5 At later self-delegation, the current ED will act as OD.
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3 Proposed Scheme

In this section, the proposed PSsd scheme is provided. We extends the key gener-
ation technique of the Itkis et al’s forward secure signature scheme [9] to provide
the self-delegation facility. The description of each algorithm is given below.
In the description, a

R← A means that a is randomly selected element from a
set A.

Key generation:

Input: id ∈ N(user identification information(ID)), T ∈ N(number of delega-
tion keys), k ∈ N(bit length of nid), l (bit length of eid,i(i = 0, .., T )).

Output: SKid,0 (signing key), SKid,1, ..., SKid,T (delegation keys), PKid (pub-
lic key).

Procedure:

1. Generate random (�k/2� − 1) bit primes q1, q2 s.t. pi = 2qi + 1(i = 1, 2) are
both prime.

2. nid ← p1p2 , tid,0
R← Z∗

nid
.

3. Generate primes eid,i s.t. 2l(1+i/(T +1)) ≤ eid,i ≤ 2l(1+(i+1)/(T +1))(i =
0, 1, 2, .., T )6.

4. f0 ← eid,1 · ... · eid,T mod φ(nid) where φ(nid) = 4q1q2.
5. sid,0 ← tf0

id,0 mod nid, Vid ← 1/s
eid,0
id,0 mod nid, tid,1 ← t

eid,0
id,0 mod nid.

6. PKid ← (nid, Vid, T ), SKid,0 ← (0, T, nid, sid,0, eid,0).
7. For i = 1, ..., T do

(a) fi ← fi−1/eid,i mod φ(nid), sid,i ← tfi

id,i mod nid.
(b) SKid,i ← (i, T, nid, sid,i, eid,i).
(c) If (i < T ) do tid,i+1 ← t

eid,i

id,i mod nid.
8. Erase tid,i (i = 1, ..., T ), p1, p2 and Return (PKid, (SKid,1, ..., SKid,T )).
9. Exit.

Proxy generation: The description of this algorithm assumes that current OD,
which runs this algorithm, delegates all or a part of the signing right which has
already been transferred from another device. Thus, the current OD has a chain
of certificates which represent the multi-level delegation. In the description, W
represents the set of these certificates in the chain. Moreover, for the general
description of this algorithm, it is assumed that the current OD has a set of
private keys SKi,lx , ..., SKi,ly(0 ≤ lx ≤ ly ≤ T ). Among them, SKi,lx is used as
a signing key and the others are used as delegation keys.

This algorithm gets a key limitation range l1, l2 (lx < l1 ≤ l2 ≤ ly) as an input
only when it executes the self-delegation. This means that SKi,l1 , ..., SKi,l2 are

6 Refer to Itkis et al’s work [9] for detail algorithm.
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included in the proxy. ED will use SKi,l1 as the proxy signing key and the other
keys as the delegation keys.

The notation H(·, ·) is regarded as a secure hash function where H : {0, 1}∗×
Z∗

nid
→ {0, 1}l (2l+1 < nid). The detailed description of this algorithm is as

follows.

Input: i (ID of the OD’s owner), j (ID of the ED’s owner), SKi,lx , ..., SKi,ly(0 ≤
lx ≤ ly ≤ T ) (private keys), mwnew ∈ {0, 1}∗ (description of the delegated sign-
ing right), l1, l2(lx < l1 ≤ l2 < ly) (key limitation range, only gets as an input
in the self-delegation), W (set of certificates).

Output: Proxy = (W ′ (new set of certificates), (SKi,l1 , ..., SKi,l2) (only when
self-delegation)).

Procedure:

1. If (W �= φ) do /* get the last certificate on the certificate chain in W */
- If (idlast �= i) do (mwlast

, llast, idlast, σlast, clast, eidlast,llast
) ←W .

else ((mwlast
, lx, ly), llast, idlast, σlast, clast, ei,llast

)←W .
else σlast ← 1.

2. (lx, T, ni, si,lx , ti,lx , ei,lx)← SKi,lx , rnew
R← Z∗

n, dnew ← rσlast
new mod ni,

σnew ← H(mwnew , d
ei,lx
new ), cnew ← rnew · sσnew

i,lx
mod ni.

3. If (i �= j) do /* non-self-delegation */
W ′ ← (W, (mwnew , lx, i, σnew, cnew, ei,lx)), Return W ′, Exit.

4. If (i = j) do /* self-delegation */
W ′ ← (W, ((mwnew , l1, l2), lx, i, σnew , cnew, ei,lx)), Return (W ′, (SKi,l1 , ...,

SKi,l2)), Erase SKi,l1 , ..., SKi,l2 .
5. Exit.

Proxy verification: ED which receives the proxy from OD verifies the proxy
with this algorithm. For a general description, the description of this algo-
rithm assumes a multi-level delegation case. This algorithm contains two sub-
algorithms. The description of each sub-algorithm is independently given after
that of the proxy verification algorithm.

Input: Proxy = (W ) (non-self-delegation case) or (W, (SKi,l1 , ..., SKi,l2)) (self-
delegation case), PKS = {PKid|(·, ·, id, ·, ·) ∈ W} (a set of public keys to verify
the certificates in W ), i (ID of OD’s owner).

Output: true (proxy verification success) or false(proxy verification failure).

Procedure:

1. W ← Proxy.
2. If (CertVerify(W, i, PKS) = false) do Return false.
3. If ((SKi,l1 , ..., SKi,l2) ∈W ) do /* Current delegation is self-delegation */

If (DelegationKeyVerify((SKi,l1 , ..., SKi,l2), PKi) = false) do Return false.
4. Return true.
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The CertVerify and DelegationKeyVerify algorithms are given below respec-
tively. The CertVerify is also used in the proxy signature verification algorithm.

CertVerify(W, i, PKS) (W : a set of certificates which form a certificate chain, i:
ID of the OD’s owner, PKS: a set of public keys to verify the certificates in W )

1. If (W = φ) do Return true, Exit.
2. (W, (Mlast, llast, idlast, σlast, clast, eidlast,llast

))←W .
3. If idlast �= i do Return false, Exit.
4. W ← (W, (Mlast, llast, idlast, σlast, clast, eidlast,llast

)).
5. While (W has two or more certificates) do

(a) (W, (M ′, l′, id′, σ′, c′, eid′,l′), (M, l, id, σ, c, eid,l)) ←W .
/* get last two certificates in the certificate chain from W */

(b) If (id′ = id) do /* self-delegation case */
(m′

w, l′1, l
′
2)←M ′.

If (M = mw) do if l′1 �= l do Return false, Exit.
else (mw, l1, l2)←M ,

If not (l′1 < l1 ≤ l2 ≤ l′2) do Return false, Exit.
else m′

w ←M ′, mw ←M , /* non self-delegation case */
If (mw violates m′

w
7) do Return false, Exit.

(c) PKid ← PKS, (·, Vid, ·) ← PKid.
(d) if (σ = H(mw, V σσ′

id ceid,lσ
′
)) do W ← (W, (M ′, l′, id′, σ′, c′, eid′,l′)).

else Return false, Exit.
6. If (W has only one certificate) do

(a) ((M, l′, id, σ, c, eid,l′))← W .
(b) mw ←M .
(c) If (σ = H(mw, V σ

idceid,l′ )) do W ← null else Return false, Exit.
7. Return true, Exit.

DelegationKeyVerify((SKi,l1 , ..., SKi,l2), PKi) (where (SKi,l1 , ..., SKi,l2) are the
delegation keys to be verified and PKi is their corresponding public key.)

1. (·, Vi, ·) ← PKi.
2. For j = l1 to l2 do

(a) (j, T, ni, si,j , ti,j , ei,j) ← SKi,j.
(b) If (Vi · sei,j

i,j �≡ 1 (mod ni)) do Return false, Exit.
3. Return true, Exit.

Proxy signature generation: ED runs this algorithm to generate a proxy sig-
nature. This algorithm is a modified version of the GQ signature scheme [8].

Input: i (ID of ED’s owner), m ∈ {0, 1}∗ (message to be signed), SKi,lx (proxy
signing key), W (= (..., (·, llast, idlast, σlast, clast)) (included in the proxy).

7 Its decision is dependent on that of the application where this right delegation ability
is used. For more information, please refer to the discussion in [10].
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Output: ProxySig(m, SKlx) = (W, (m, lx, i, σ, c)) (Proxy signature).

Procedure:

1. If (W �= φ) do (·, llast, idlast, σlast, clast) ←W .
/* get last warrant information from W */
else σlast ← 1.

2. (lx, T, ni, si,lx , ti,lx , ei,lx) ← SKi,lx , r
R← Z∗

n , d← rσlast mod ni.
σ ← H(m, dei,lx ) , c ← rsσ

i,lx
mod ni.

3. Return (W, (m, lx, i, σ, c)), Exit.

Proxy signature verification:

Input: (W, (m, lx, i, σ, c, ei,lx)) (proxy signature), PKi (public key of ED’s owner),
PKS = {PKid|(·, ·, id, ·, ·) ∈W} (Public keys to verify the certificates in W ).

Output: true (proxy signature is valid) or false (proxy signature is invalid)

Procedure:

1. A← CertVerify(W, i, PKS).
2. If A = false do Return false, Exit.
3. If W �= φ do (W, (·, llast, idlast, σlast, clast)←W ) else σlast ← 1.
4. (·, Vi, ·) ← PKi.
5. If σ = H(m, V σlastσ

i cei,lx σlast) do Return true else Return false.
6. Exit.

4 Security Analysis

Based on the security requirements described in Section 2, we build the se-
curity model for the proposed proxy signature scheme and analyze whether
the proposed scheme meets them respectively with the proposed definition. We
only deal with the self-delegation case because the proposed scheme exactly
follows the delegation-by-certificate for non-self-delegation case: the delegation-
by-certificate has been known to be secure with the appropriate setting of the
description of the signing right [1,10]. This is a reasonable assumption because
the users in the proposed scheme generates their own security parameters inde-
pendently8.

4.1 Definition of Security in the Proposed PSsd Scheme

We define the experiment F-PSsd first. In addition, the definition of the security
in the PSsd scheme is provided with the experiment F-PSsd.
8 In Malkin et al’s work [10,11] all users’ keys are NOT independently generated. In

the description of GenPS(1
k) at the proof of theorem 2 in [11] shows that all users

generate their private keys with one instance of GenKI(1
k, c · n).
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• Experiment F-PSsd

1. Generate the public key PKid,0 = {nid, Vid, Tid} and the private keys
SKid,0, ..., SKid,T . In addition, the number of devices b ∈ N is selected includ-
ing the main device that has all private keys at initial step. Let these selected
devices be named as 0, 1, ..., b.

2. The self-delegation is executed: the main device (0) self-delegates the signing
right to a device 1 by sending the delegation keys and their appropriate certifi-
cates, 1 self-delegates the delegated signing right to 2, and repeat it until b − 1
self-delegates its signing right to b. Finally, the devices 0, ..., b make a delegation
chain.

3. Among the participant devices, the adversary tries to select a specified device
j (∈ {0, ..., b}) as a target device to attack. After the selection of the target
device, the adversary can acquire all information of the other devices including
their signing key and delegation keys.

4. With the gathered information of the previous step, the adversary runs an
algorithm B. B can query the proxy signature for any message m ∈ {0, 1}∗
to device j (as signature oracle) and request to delegate a part of j’s signing
right to another devices (as delegation oracle). This execution can be repeated
until B wants to terminate this step.

5. If possible, B outputs a forgery result, which can be either the forgery of the
proxy signature or that of the proxy.

If the adversary in F-PSsd fails, the proposed scheme meets the five security
requirements of Section 2.2 owing to the following reason:

– Verifiability: If the adversary does not win, the adversary cannot make a valid
proxy signature of the target device j. This includes that the certificates
which are contained in the proxy signature cannot be forged. Thus, the
proposed scheme meets this requirement.

– Unforgeability: Since the failure of B means that the proxy signature cannot
be forged, this requirement is preserved.

– Non-repudiation: Since the signing key is assigned before the start of the
adversary’s attack and the proxy signature and the proxy cannot be forged,
the proposed scheme meets the requirement.

– Forward Security and Backward Security: As B fails even if the signing keys
of all devices except j are revealed to B, these requirements are preserved.

Aside from the experiment model, the proposed scheme meets the Limited
Propagation requirement because the number of times that a device can execute
the self-delegation is limited to the number of delegation keys in the proposed
scheme.

Let the probability that the experiment F-PSsd outputs a valid forgery result
be SuccPSsd(PSsd[k, l, T ], B). We define that the insecurity function InSecPSsd

(PSsd[k, l, T ], t, qsig) is the maximum value of SuccPSsd(PSsd[k, l, T ] , B) when
the number of the signature and delegation queries are limited to qsig .
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Based on the definition of InSecPSsd(PSsd[k, l, T ], t, qsig), the security of the
PSsd scheme is defined as follow.

Definition 1 (Security of the Pssd scheme). If InSecPSsd(PSsd[k, l, T ], t,
qsig) for a Pssd scheme is negligible, then the Pssd scheme is secure.

4.2 The Proofs

To show the proposed PSsd scheme is secure, we bring in the modified strong RSA
assumption which has been suggested by Itkis et al’s work [9]: Given n = p1p2

such that p1 = 2q1+1 and p2 = 2q2+1 where q1 and q2 are (�k/2�−1) bit prime
numbers, let SuccSRSA([k, l, T ], A) be the probability that A can find a (β, r) pair
for a random α ∈ Z∗

n where βr ≡ α mod n (where 1 < r ≤ 2l+1). Then, the mod-
ified strong RSA assumption is that if InSecSRSA(k, l, t) is the maximum proba-
bility of SuccSRSA([k, l, T ], A), InSecSRSA(k, l, t) is negligible. (For more detail,
see Section 2.2 in [9].) Our proofs are based on the random oracle model [2].

We first show that SuccSRSA([k, l, T ], A) ≥ ε′ if SuccPSsd(PSsd[k, l, T ], t,
qsig) ≥ ε. Following this, by the antithesis, we show that if SuccSRSA([k, l, T ], A)
≤ ε′, which is the modified strong RSA assumption, then SuccPSsd(PSsd[k, l, T ],
t, qsig) ≤ ε.

Theorem 1. Given a forger F for the proposed PSsd scheme that runs in time at
most t, asking qhash queries and qsig signing queries, such that SuccPSsd(PSsd[k,

l, T ], B) ≥ ε, an algorithm A can be constructed such that SuccSRSA([k, l, T ], A) ≥
ε′ with running in time t′ where t′ = 2t + O(t) (O(t) is polynomial) and ε′ ≥
(ε−qsigqhash22−k)2

(T+1)2·qhash
− ε−qsigqhash22−k

2l(T+1)
.

Proof. Please refer to the appendix A. �
Theorem 2. The proposed scheme is secure based on the definition 1.

Proof. Please refer to the appendix B. �

5 Performance Analysis

In this section, we analyze the computational cost to run each algorithm. The
computational cost for each algorithm in the proposed scheme is given below.
We referred to the Itkis et al’s work [9] (in Section 3.3) for the computational
complexity of the basic operation. (T, k, l are described at the key generation in
Section 3.)

– Key generation: The computation cost to generate a common modulus
nid and eid,0, ..., eid,T is O(k5) and O(l4T ) respectively [9]. Since the com-
putational complexity to execute one modular exponentiation in Z∗

nid
, one

modular inversion, and one modular multiplication in Z∗
φ(nid) are O(k2l),

O(k2), O(kl) respectively [9], the overall computational complexity of the
key generation algorithm is O(k5 + l4 +Tk2l+Tk2+Tkl) excluding the cost
of running the secure hash function.
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– Proxy generation: As three modular exponentiation in Z∗
nid

are needed to
run, the proxy generation algorithm requires a total time of O(k2l).

– Proxy verification: To verify the certificates in W , it needs O(|W |k2l)
running times. In self-delegation case, the computational cost for verifying
the received delegation keys is O(bk2l) where b is the number of the received
delegation keys. Thus, the overall running time is O((|W | + b)k2l).

– Proxy signature generation: As three modular exponentiation in nid are
needed to run, O(k2l) running time is required.

– Proxy signature verification: Since the certificates in W should be veri-
fied, O(|W |k2l) running time is required.

6 Relation Between Malkin et al’s Construction and the
Proposed Scheme

In a sentence, our result does not severely affect Malkin et al’s work because KI
can be constructed with the proposed technique and vice versa.

What we have addressed is to design a proxy signature scheme providing self-
delegation in real-world setting. In a practical aspect, a new user can participate
in the system or leave the system. In Malkin et al’s proxy signature, the system
starts after all users have their keys. We have thought that this construction
is not appropriate for the real-world construction because joining or leaving
users are always possible. As we have said, Malkin et al’s construction leads
scalability problem and, if the system starts before all users get their keys, a
security problem rises due to the existence of the global secret key. Surely, it
is guessed that this construction is to show the theoretical equivalence between
the proxy signature and KI. In their security model, the adversary starts after
the key generation procedure. Thus, the security problem we indicated does not
happen.

In a theoretical sense, the proposed scheme can also be transferred to the
generic construction. In the proposed construction, the proxy signature (with n
users and the maximum number of self-delegation allowed for each user is c) can
be constructed from n instances of (c, c−1) KI. In this case, the adversary in the
proxy signature may be more powerful than that of KI because the adversary in
the proxy signature can success without breaking the security of KI.
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Appendix A Proof of Theorem 1

A uses F-PSsd as a subroutine. A gets an instance of strong RSA problem (n, α ∈
Z∗

n) as an input and solves it with F-PSsd. Initially, A generates an device owner
id ∈ Z, (eid,0, ..., eid,T ) with the same procedure as the key generation algorithm.
Before the execution, A manipulates the random tape of F-PSsd so that nid = n,
t
eid,j

id,0 = α during the execution of F-PSsd (tid,0 is unknown to A). A computes
the public key V = 1/αeid,0·eid,1·...·eid,j−1·eid,j+1·...·eid,T and stores it. (In the rest
of the proof, we describe aid,x as ax for a simple description.)

After these initial establishment, A repeatedly runs F-PSsd until F-PSsd
attacks the device which has SKj . Assume Devj has SKj as a signing key. In
this case, A can provide the answer of the oracle queries and request by F-PSsd
as follows.

– Private Keys: A can provide all private keys except SKj . For example,
if F-PSsd requests SKo (o < j), A can compute the secret information of
the private key so = αe0·e1·...·eo−1·eo+1·...·ej−1·ej+1·...·eT . Surely, A can provide
SKo where (o > j) with a similar computation as (o < j) case.

– Proxy Signature and Delegation Query: The answer of Devj ’s proxy
signature query for a message m ∈ {0, 1}∗ (or a delegation query with a
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description of the signing right mw ∈ {0, 1}∗) can be provided by the follow-
ing procedure. As F-PSsd has the information that all devices have except
Devj , F-PSsd can generate the proxy if A just gives F-PSsd the OD’s sig-
nature part when the delegation query is requested. Thus, in the rest of the
proof, we regard that the delegation query is the same as the proxy signature
query. In the signature query, F-PSsd gives A (m, σlast) as inputs (where
σlast is the last certificate in W which Devj has as a part of proxy.
1. Select cs ∈ Z∗

n, σs ∈ {0, 1}l randomly and compute ys = c
ej ·σlast
s V σs·σlast .

2. Return (W, m, j, id, cs, ej) and stores (s, j, ej , ys, σs, cs, m) in signature
query table.

– Hash Query: For t-th hash query with an input (mt, yt), A first finds the
tuple (·, ·, ·, y′, σ′, ·, m′) such that mt = m′ and yt = y′. If it exists, return
σ′. Otherwise, A generates a random σt ∈ {0, 1}l and returns (t, mt, yt, σt).
Finally A stores it in the hash query table.

If F-PSsd outputs a successful forgery, let the output be (W, m1, j, id, c1, ej).
Then A finds the corresponding hash query result (h′, m1, y1 = c

ej ·σlast1
1 V σ1·σlast1 ,

σ1) in the hash table and memorizes it.
Now, A initializes F-PSsd such that the previous execution runs again. For

the same input as the previous execution, A answers the same hash query result
that is stored in the hash query table during the second execution. However, if
the input of h′-th hash query is (m1, y1) that is the same as the first execution, A
generates a new random value τ1 ∈ {0, 1}l and returns it. If (m1, y1) is queried at
different times or not queried, A stops the execution and restarts the experiment.

After the second execution, A gets (W, m1, j, ID, c2, ej) as F-PSsd’s output.
As the same execution is done before h′-th hash query, both executions have the
same input at h′-th hash query. So y1 ≡ cσ1·σlast1

1 V ej ·σlast1 ≡ cτ1·σlast1
2 V ej ·σlast1

(mod n). Thus, (c1/c2)ej ≡ V τ−σ1 ≡ α(e0·...·ej−1·ej+1·...·eT )·τ−σ1 (mod n).
Because ej is guaranteed to be relatively prime with e0 ·...·ej−1 ·ej+1 ·...·eT and

τ−σ1 has at least one fewer bit than ej, gcd((e0 ·...·ej−1 ·ej+1 ·...·eT )·(τ−σ1), e) =
gcd(τ − σ1, e) < e (as long as σ1 �= τ). Thus, r = e/gcd((e0 · ... · ej−1 · ej+1 · ... ·
eT ) · (τ −σ1), e) > 1 and by Lemma 1 in [9], A will be able to efficiently compute
the r-th root of α.

Probability Analysis: In the signature query step, since F-PSsd gets A’s response
instead of the true random oracle, it can be happened that for some signature
query, the hash value that A needs to define has already been defined through
a previous answer to a hash query. In this case, as A cannot reply an altered
hash value during the second execution, F-PSsd’s success probability with the
interaction of A is reduced at most to ε−qsigqhash22−k (∵ |Z∗

n| = 4q1q2 > 2k−2).
Let this value be δ. In addition, A can continue the execution only if F-PSsd
outputs a forgery against Devj . Let this probability be εj = δ/(T + 1).

Suppose that ph is the probability that F-PSsd succeeds to the forgery with
h-th hash query result. Then, εj =

∑qhash

h=1 ph.
Now we consider A’s success probability. For A’s success, F-PSsd should

make the forgery with h-th hash query result at both executions of F-PSsd.
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Since both executions are independent, the probability is at least p2
h. But the

additional requirement that the hash query result in the first execution should
be different from that in the second execution (σ1 �= τ1) reduces the probability
to ph(ph − 2−l).

Therefore, ε′ ≥
∑qhash

h=1 ph(ph − 2−l) and this leads the following inequalities
by Lemma 1 in [9].

ε′ ≥
qhash∑
h=1

ph(ph − 2−l)

≥ ε2j/qhash − 2−lεj

≥ δ2

(T + 1)2 · qhash
− δ

2l(T + 1)

=
(ε− qsigqhash22−k)2

(T + 1)2 · qhash
− ε− qsigqhash22−k

2l(T + 1)

By solving the above quadratic inequality for (ε− qsigqhash22−k)/(T +1), the
following inequality is derived.

(ε− qsigqhash22−k)/(T + 1) ≤ 2−(l+1)qhash +
√

2−(2l+2)q2
hash + qhashε′

≤ 2−(l+1)qhash + 2−(l+1)qhash +
√

qhashε′

= 2−lqhash +
√

qhashε′

Therefore, ε ≤ (T + 1)(2−lqhash +
√

qhashε′) + qsigqhash22−k.

Probability Analysis: A executes F-PSsd twice. As the other operations that A
executes have polynomial-time complexity, it can be derived that t′ = 2t + O(t)
where O(t) is the polynomial of T, l, k. �

Appendix B Proof of Theorem 2

Because SuccSRSA([k, l, T ], A) ≥ ε′ if SuccPSsd(PSsd[k, l, T ], B) ≥ ε, by an-
tithesis, if SuccSRSA([k, l, T ], A) ≤ ε′, then SuccPSsd(PSsd[k, l, T ], B) ≤ ε.
Thus, InSecPSsd(PSsd[k, l, T ], t, qsig) = ε because the modified strong RSA
assumption indicates that SuccSRSA([k, l, T ], A) ≤ ε′ where ε′ is negligible.

If we solves the inequalities in Theorem 1, we can derive that ε ≤ (T +
1)(2−lqhash +

√
qhashε′) + qsigqhash22−k (For more detail, see the appendix). As

both qhash and qsig are much smaller than 2k and 2l, ε is negligible. Thus, based
on the definition 1, the proposed scheme is secure. �
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Abstract. Sanitizable signatures introduced by Ateniese et al. is a pow-
erful and fairly practical tool that enables an authorised party called the
censor to modify designated parts of a signed message in an arbitrary
way without interacting with the signer. In our paper we present several
extensions of this paradigm that make sanitizable signatures even more
useful. First of all we show how to limit the censor’s abilities to mod-
ify mutable parts of a signed message to a predetermined set of strings.
In our next proposal we show how to construct a scheme wherein the
censor can insert an arbitrary string into a document, but this must be
the same string in all designated places. We also present a construction
based on a sanitizable signature that allows the censor to present only a
constant number of versions of the sanitized message. Another extension
provides so-called strong transparency. In this case the verifier does not
know which parts of the message could have been modified. Finally, we
point out new applications of sanitizable signatures based on combining
them with time released cryptography techniques.

1 Introduction and Previous Work

The concept of a particular kind of sanitizable signatures we refer to was intro-
duced by Ateniese et al. in [1]. According to this notion, a sanitizable signature
is a new kind of digital signature with the following property: a designated party
called the censor can change (designated) parts of a signed message in such a
way that the signature of modified message still remains valid. The point is that
this change can be done without the collaboration of the signer. This property
can be obtained thanks to the chameleon hashes that are extensively used in
the construction of the signature. Chameleon hashes, also called trapdoor com-
mitments, allow only the owner of a special private key to find a collision. From
the censor’s point of view, a single message signed using a sanitizable signature
scheme is a set (possibly infinite) of ”messages allowed by the signer”. It is a
fairly practical solution in many scenarios presented in [1] like injections with
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advertisements in various files, anonymising data-bases, secure routing and many
others, wherein semi-trusted provider has to modify a broadcasted message on
behalf of the author or owner of particular data.

However, in some scenarios the fact that mutable parts of a message can be
modified by the censor in an arbitrary way (the censor can insert any string in
the place of the original one and the signature would be still accepted during
the verification procedure) can be very problematic. Authors of sanitizable sig-
natures scheme [1] proposed inserting in the immutable part of the message an
auxiliary information like ”write here the day of the week” expressed in natu-
ral language. In many scenarios this would be insufficient. We can imagine, for
example, a situation in which we have to deal with a huge amount of different
kinds of messages that have to be processed in an automatic manner. We should
also take into account attacks based on injecting malicious code into a program.
In other words we need an efficient mechanism that would limit the choice of
the censor to predetermined set.

Another problem appears when we need to allow the censor only to change
limited number of blocks in the message (chosen arbitrary by the censor from
potentially mutable blocks). For example, we would like to give him the oppor-
tunity of changing k blocks out of n possible.

Moreover, in the original scheme the censor can insert material which is inde-
pendent of other blocks. Let us consider a situation in which the censor would
like to present an application form with several gaps that are to be filled with the
same name of a particular candidate for a particular position. Existing scheme
does not support this kind of scenario, wherein mutable blocks should be corre-
lated.

All these needs are addressed by modified sanitizable signature schemes, de-
scribed below. We also propose some other extensions – we describe a version of
the scheme with so called strong transparency. This means that the verifier does
not know which parts of a signed message are mutable. At the end, we briefly
outline some minor extensions and applications based on combining sanitizable
signatures with time released cryptography techniques.

1.1 Related Work

Steinfeld, Bull and Zheng presented Content Extraction Signatures [17], that
allow everyone to hide some blocks of a signed message. Another significant
paper is [8] by Johnson et al. These authors introduced many useful schemes.
One of them is the Redactable Signature. Functions offered by this scheme is
in principle very similar to the Content Extraction Signature, but both schemes
are built on different cryptographic primitives. Other papers presenting various
schemes that allow hiding parts of a signed message are papers by Miyazaki
et al. [13,14] and Izu et al. [7]. In these papers one can find many interesting
schemes tailored for different scenarios. Most of them take into account many
parties that are interested in hiding different parts of a message. Comparison of
most of these schemes can be found in [14].
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Our paper refers mainly to Ateniese et al.’s sanitizable signatures mentioned
above and described in more detail below. Roughly speaking, in this scheme the
designated censor can change the content of designated (so-called mutable) parts
of a signed message without interaction with the signer. In previous schemes the
censor could only hide some parts of the message. For this reason the scheme of
Ateniese et al. has different functions and different applications than previous
proposals. Let us note that the first kind of signatures (allowing only hiding
some blocks of a signed message) were also called sanitizable signatures in some
papers ([13,14]).

We also extensively use the accumulator technique introduced in [3] and de-
veloped and used among others in [8]. Accumulators are hash functions that
”contain” a set of messages S. Given all messages from S one can prove that a
particular message m ∈ S. Moreover, one can prove this fact in a very efficient
manner without revealing the rest of the set S. We also propose combining saniti-
zable signatures with various time-released techniques. The idea of time-released
cryptography is attributed to Timothy May [16,11]. The goal is to encrypt a mes-
sage or sign a document in such a way that it can be decrypted (verified) after
a predetermined interval of time has passed [16] or a particular condition is
fulfilled [9].

Sanitizable signatures and other schemes mentioned above can be regarded as
a particular kind of the schemes that allow computing a signature without any
secret key from another signature in a predetermined and limited fashion without
cooperation with the original signer. This idea was introduced several years
ago by Ronald Rivest [15]. Many impressive schemes based on this idea have
been proposed. The most important schemes we are aware of are homomorphic
signatures - in particular the transitive signature of Micali and Rivest [12].

1.2 Organisation of This Paper

In the second section we recall the sanitizable signatures of Ateniese et al. [1]. The
third section is devoted to techniques limiting the range of possible modifications
made by censor. This is based on the accumulator technique also recalled in this
section. In the fourth section we show how to force the censor to make the same
changes in logically linked blocks. In the fifth section we present techniques that
strongly limit the censor - i.e. allow him to change only k out of n mutable blocks.
The sixth section contains a modification of the scheme that provides strong
transparency mentioned above. In the seventh section we consider combining
time released cryptography with sanitizable signatures. The last section contains
final remarks and open questions that we find important.

2 The Sanitizable Signature of Ateniese et al.

Ateniese et al. [1] introduced the notion of sanitizable signatures that allow
modifying some blocks. They also proposed a kind of sanitizable signature based
on chameleon hashes. The idea of this proposal is as follows. The message is
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divided into blocks. Then the value of the chameleon hash function of some
blocks, called mutable, is computed. The value of the“regular” hash function
is computed for other immutable, blocks. Then the signer signs hash value of
all concatenated blocks. The chameleon hashing used in the construction allows
designated party, (censor) to find a collision. So, in other words he is able to
change the mutable blocks of the message in such a way that the signature
remains still valid. We recall briefly this scheme, since our contribution can be
regarded as its extension of this scheme.

2.1 Chameleon Hashing

From the practical point of view the kind of chameleon hash function that is
used plays very important role. Authors of the idea of sanitizable signatures
recommended using chameleon hashes introduced in [2]. They chose this scheme
because of its strongly unforgeable property, what means that pointing collision
will not reveal the secret key (trapdoor value). For this reason, one public key can
be used many times. According to this scheme, in order to compute chameleon
hash of a message m, first the prime numbers q and p (of bitlength κ and
such that p = uq + 1) are chosen. Then the private key x ∈ [1, q − 1] is
selected uniformly at random and the public key is computed as y = gx, where
g is a generator of subgroup of squares of order q. After that random values
α, β ∈ [1, q − 1] are chosen and the parameter e is computed as e = H(m, α),
where H(·, ·) is a standard collision-resistance hash function, mapping arbitrary-
length bitstrings to strings of fixed length. Finally the chameleon hash of m is
computed as:

CHy(m, α, β) = α− (yegβ mod p) mod q.

The collision can be found only by the owner of the private key x. The idea of
finding a collision is as follows. Let C = CHy(m, α, β). First the random number
k′ ∈ [1, q − 1] is generated. Then the other values are computed as:

α′ = C + (gk′
mod p) mod q,

e′ = H(m′, α′),
β′ = k′ − e′x mod q.

Of course CHy(m′, α′, β′) = C. Indeed,

α′−(ye′
gβ′

mod p) mod q = C+(gk′
mod p) mod q−(gxe′

gβ′
mod p) mod q = C

2.2 Description of the Sanitizable Signature Scheme

Preliminaries: Let xS , yS denote the private and the public key of the signer
respectively. Let xC , yC be the private and the public key of the censor
(a person that is allowed to modify some parts of the signed message). A
chameleon hash of the message m with a random parameter r under the
public key yC will be denoted by CHyC (m, r).

Let SigxS(m) be a secure digital signature of a message m computed by
the owner of the private key xS .
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Preparing a sanitizable signature of m: Let m = m1|| . . . ||mt. In order to
create a sanitizable signature of the message m, the signer has to choose a
random number IDm and assign blocks of the message m, say mi1 , . . . , mik

that the censor will be able to modify. We call these blocks mutable or
sanitizable. After that, using the public key of the censor yC , the signer
computes:

m̄i = CHyC (IDm||i||mi, ri) for i ∈ {i1, . . . , ik}
m̄i = mi||i for other i.

The sanitizable signature is finally computed as:

σ = SigxS(IDm||t||yC ||m̄1|| . . . ||m̄t).

Verifying a sanitizable signature of m: The procedure of signature verifi-
cation depends on the kind of signing scheme. During the verification iden-
tifier IDm, the public key of the censor and random values ri are attached
(necessary for computing the proper chameleon hashes). That is,

VERIFY(σ, m, yS , yC , IDm, ri1 , . . . , rik
) −→ {FALSE, TRUE}.

2.3 Remarks

Let us note that only the censor has the private key xC corresponding to the
public key yC . For this reason only the censor is able to find ”collision” -
i.e. arbitrary (IDm, i, m′

i) and particular r′i such that CHyC (IDm||i||mi, ri) =
CHyC (IDm||i||m′

i, r
′
i). This property of chameleon hashes allows the censor to

modify parts of the message in such a way that the signature σ remains still
valid.

3 Limiting the Set of Possible Modifications of a Single
Mutable Block

One of the most important problems with regular sanitizable signatures pre-
sented in the previous section is that the censor can exchange particular block
in arbitrary way. In practice the signer often needs to give only limited list of
possible blocks that can be inserted in particular position in the text. As it is
suggested in [1], the signer can insert in the immutable part of the text a kind
of limitation like write here the name of the day just before a mutable block.
Anyway such a solution implemented directly can not be automatically verified.
We should also take into account various attacks based on ”injecting” malicious
code.

Let us note that we can overcame this weakens by ”naive” solution wherein
length of the value of hash function is linear in the cardinality of the set of
acceptable block’s contents in particular position.
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It would be much more efficient to use hash and sign paradigm with a one-
way hash function that has the same output only at elements from the set of
acceptable values pointed by the censor.

I.e. we need set-hash function H : {0, 1}∗ → {0, 1}l that for elements of the
finite set M = {m1,. . . , mk} has the value h i.e. for mi ∈ M holds H(mi) = h.
Moreover this function should behave like a regular hash function. Loosely speak-
ing, for given h and M it is computationally infeasible in practice to find m′ /∈M
such that H(m′) = h.

Since we cannot find such a function we propose two simple solutions par-
tially similar to the idea of set-hash function. One of them is based on so-called
accumulator technique, another on Bloom filters. We remark advantages and
disadvantages of both of them.

3.1 Sanitizable Signatures and Accumulator Technique

We discuse below techniques based on idea of accumulators (see [3]). Let us note
that extended accumulator idea was previously used in [8] in another context to
built redactable signature scheme. Below we recall accumulator technique.

Preliminaries: Let N = p · q and p = 2p′ + 1, q = 2q′ + 1 for large primes
p, p′, q, q′. Moreover we assume that |p| = |q|. Let H∗(m) be the value of
a ”regular” hash function of the message m.

Hashing: Let M = {m1, . . . , mk} be the set of messages to be hashed. We
compute:

H(M) = x i≤k H∗(mi) mod N

Verifying: Let us define:

Hj(M) = x i�=j H∗(mi) mod N.

Let z = H(M) and zj = Hj(M). To check if the massage mj ∈M , we have
to check if the following equality holds:

z = z
H∗(mj)
j mod N.

Note that it is easy to compute zj if one knows the set M .
Now we can ask if this construction meets security requirements. In particular

we would like to know if it is possible in practice to find a preimage for an
arbitrary z or collision for the set M i.e. M ′ �= M such that H(M ′) = H(M).
This function is indeed secure. Security analysis of this function is non trivial
and provided in [8].

Sanitizable signatures with accumulator hashing. Now we can apply accumu-
lators described above to sanitizable signatures. All sub-protocols described in
previous section are exactly the same except that:

1. The signer signs the value of an accumulator for the set M allowed for
particular block instead of using chameleon hashes.
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2. The censor provides the appropriate values z and zj to prove that mj ∈ M
during the verification.

Note that everyone can check if M is a set of allowed messages by simple
computing H(M). Let us note that very often M can be correctly guessed for
example when one can insert number of the day of the month in a particular
place. To avoid that signer can add to the set M a random string and reveal it
only to the censor. In this scenario only the censor and the signer can present
appropriate value zj .

Shortcomings of an approach based on accumulators. Solution proposed above
works - censor has limited permission for modifying signed message. Moreover
presented signature for the verifier has a constant size independently on cardi-
nality of ”permitted” set M . However, the censor needs to know whole set M
to provide modified signature. It can be cumbersome in some application when
set M contains large number of elements - for example, a list of employees of
a bank. In such a situation one can consider using Bloom filters. This idea is
outlined below.

3.2 Sanitizable Signatures and Bloom Filters

Bloom Filters. Bloom filter is a technique described for the first time in [4]. A
Bloom filter for a set M = {m1, . . . , mt} is represented by an r-bit array BM . All
bits are initially set to 0. Let h1, . . . , hk be k independent hash functions with
the common range {1, . . . , r}. In this scheme i− th bit is set to 1 if and only if
there exists such a message mj and a function hl such that hl(mj) = i. Having
m one can try to check if m ∈ M . At the beginning hi(m) for each i is computed.
If m ∈ M then hi(m) = j implies BM [j] = 1. If this condition does not hold
for any i we certainly know that m /∈ M . Otherwise, if this condition holds for
every i we can assume that m ∈M . Obviously we should take into account ”false
positive” error. Probability of a false acceptance can be approximated very well
by the following formula:

(1− e−k·t/r)k.

Note that one can check if particular message belongs to the set M without
knowledge of all elements of the set M . For that reason we could exchange
accumulators from previous subsection with Bloom filters in order to overcome
the shortcomings of accumulator functions.

Shortcomings of an approach based on Bloom filters. The price of using Bloom
filters seems to be high. First of all, the censor can insert in mutable part the
message that is unwanted by the original signer. Note that probability of false
acceptance can be significantly reduced at the price of using much longer arrays.
We suppose that sanitizable signatures with Bloom filters could be applicable in
very particular situations - for example in real time system in which accuracy is
not extremely important. Let us note that one can make finding m /∈ M such
that m is accepted during the verification procedure infeasible at the price of
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significant extending filter’s size (parameter r). However, an array with very
large number of bits can be useless.

4 Enforcing the Same Modifications of Different Mutable
Blocks

In this section we consider a scenario in which a document contains some number
of mutable blocks that should always have the same values. As an example we
can imagine an application form with the first name and the family name in
several places.

Let us suppose that the signer would like to allow the censor to change these
blocks, but at the same time he wants to be sure that the document remains co-
herent after modifications (all designated blocks should contain the same value).
Below we present a signing scheme that supports this requirement.

Preliminaries: Let us assume that g is a generator of Z∗
p and Sig(·) is a secure

digital signing scheme. In order to simplify the notation we skip ”mod p“
whenever it is obvious from the context. Moreover let us assume that the
signer wants to sign a message m = m1||m2|| . . . ||mt with k mutable blocks
(say mi1 , . . . , mik

) that should always have the same values.
Signing: In order to sign m, the signer has to generate random values x1, . . . ,

xk, r. Then he computes: hi = gxi for i = 1, 2, . . . , t.
Signature of m is a triple: (c, r, Sig(c)), where:

c = hm1
1 · hm1

2 · hm3
3 · . . . · hmt

t · gr.

For making blocks mi1 , . . . , mik
mutable signer has to reveal (only to) the

censor the sum s = xi1 + . . . + xik
.

Signature Verification: The verification process consists of two steps:
1. checking the validity of the signature Sig(c),
2. checking if c = hm1

1 · hm2
2 · hm3

3 · . . . · hmt
t · gr.

Changing Mutable Blocks: Censor having the sum s = xi1 + . . . + xik
can

exchange blocks mi1 = mi2 = . . . = mik
with any m∗

i1 = m∗
i2 = . . . = m∗

ik
.

The new signed message will have a form m∗ = m∗
1||m∗

2|| . . . ||m∗
t , where

m∗
i = mi for i /∈ {i1, . . . , ik}. The signature of the modified message m∗ is a

triple (c, r∗, Sig(c)), where r∗ = r − δ · s and δ = m∗
i1 −mi1 . Let us stress

that using s these values can be easily computed.
Moreover, if m∗

i1 = m∗
i2 = . . . = m∗

ik
then

h
m∗

1
1 · . . . · hm∗

t
t · gr∗

= hm1
1 · . . . · hmt

t hδ
i1 · . . . · h

m1
ik−1 · h

m1
ik+1 · . . . · hδ

ik
· gr−δ·s =

= hm1
1 · . . . · hmt

t · gr−δ·s+δ(xi1+...+xik
) = c.

So the triple (c, r∗, Sig(c) will be accepted as a signature of m∗. Note that
it is not feasible to provide a valid signature without s for modified message
m∗ �= m. Moreover, even with s, the censor cannot present a signature for a
message with diffrent mutable blocks.
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5 Limiting the Number of Modifications of Mutable
Blocks

Let us consider a scenario in which the signer wants to limit the number of
mutable blocks of a message m that can be changed by the censor. We want to
allow him to choose l out of n blocks to be modified. This goal can be achieved
by punishing the censor for too large number of changed blocks. The simplest
method of such a punishing is based on revealing the censor’s private key. This
idea can be implemented by using hash function that causes the key exposure
after using a trapdoor. For instance, the chameleon hash defined in [10] as:

CHy(m, r) = ym · gr.

where y = gx is the public key, g is the generator of a prime order cyclic group
and x is the private key.

Indeed, if someone knows (m1, r1) and (m2, r2) such that CHy(m1, r1) =
CHy(m1, r2) and m1 �= m2, he can extract the private key x as:

x =
r2 − r1

m1 −m2

Of course in the sanitizable signatures scheme with this chameleon hash func-
tion, the signer is able to reveal the private key of the censor, if any block is
changed. Below we present scheme based on similar trick.

5.1 Scenario Allowing Modification k Out of n Mutable Blocks

Let us suppose that the signer wants to allow the censor to change up to k out
of n different mutable blocks. In case of misuse, i.e. if more than the k blocks
are modified, the censor’s private key will be revealed.

Preliminaries: Let us assume that g is the generator of Z∗
p , xC is a private

key of the censor and yC = gxC is his public key. As before, in order to
simplify the notation we skip mod p whenever it is obvious from the context.
Moreover let us assume that the signer wants to sign the message m =
m1||m2|| . . . ||mt using SigxS

(·), a secure digital signing scheme. He wants to
allow the censor to change k out of n of blocks of the signed message, say
any k blocks out of mi1 , . . . , min . To make it possible, the censor must first
choose random values f1, f2, . . . , fk. Then he constructs a polynomial:

F (y) = xC + f1y + f2y
2 + · · ·+ fkyk

and sends values gi = gfi for 0 < i ≤ k to the signer .
Signing: Signer chooses a random identifier IDm and computes zi = y · gi

1 ·
. . . · gik

k = gF (i) for i = 1 . . . n. After that, the signer chooses random values
r1, . . . , rn and computes a chameleon hash of each of the n mutable blocks
of the message according to the formula:

m̃i = IDm||i||mi

m̄i = CH(m̃i, ri) = zmi

i · gri = gF (i)·mi+ri
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For immutable blocks of the message m he computes: m̄i = mi||i. Finally
the signature of the message m is:

SigxC(IDm||t||yC ||m̄1|| . . . ||m̄n).

Revealing the censor’s private key: One can easy see that modification of
the i-th block causes leaking of F (i). Obviously, when k+1 different mutable
blocks are changed, the signer gets k + 1 distinct points of the polynomial
and that allows him to reconstruct the polynomial thanks to the Lagrange
interpolation. This suffices to get xC - the private key of the censor.

6 Strong Transparency

In [1] an idea of transparency in sanitizable signatures was also introduced.
Transparency in this context means that no one except the censor and the signer
is able to guess whether the message has been sanitized. In the original paper
authors distinguished among two kinds of transparency:

Weak transparency: verifier knows exactly which parts of the message are
potentially mutable and which parts are immutable. However, he does not
know if they were indeed modified.

Strong transparency: verifier cannot distinguish immutable from mutable
parts of signed message.

In this section we would like to propose an extension of the basic scheme
that supports strong transparency in sanitizable signature scheme. Authors of
[1] noted that their scheme provides weak transparency. In one of many interest-
ing extensions described in [1] authors tries to provide strong transparency by
assigning independent public key to the each block. So the signature has a form:

Sigxs(IDm||t||yC1 ||yC2 || . . . ||yCt ||m̄1|| . . . ||m̄t)

where t is a number of blocks, m̄i is a chameleon hash value of i − th block
of a message using public key yCi of a particular censor. Thanks to this trick
each block could have been modified by a diffrent censor. However, authors of [1]
remarked that this technique can be also used in order to provide strong trans-
parency property. They suggest to use ”dummies” - each block of the message
is potentially mutable, but private keys assigned to some blocks are random
”dummy” strings – no one knows corresponding private key. In effect no one
can change a block in which hash with ”dummy” key is used. This solution has
a shortcoming recognised already by authors of this proposal. We should take
into account that very often in practise there are be several well-known censors
with established public keys. They could be recognised easily and distinguished
from ”dummies”. In such a (probable in practice) situation this solution cannot
satisfy requirement of strong transparency.
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6.1 Modified Scheme Supporting Strong Transparency

Idea of Ateniese et al. can be slightly enhanced in order to obtain true strong
transparency. The main trick is as follows: no one but the censor and the signer
knows relation between public keys used during chameleon hashing and identity
of the censor that posses corresponding private key that allows modifications.
This can be simply achieved by reviling the private key only to the censor. We
propose below a generic extension that can be combined with chameleon hash
functions based on discrete logarithm problem.

Let Ey(·) denote a secure asymmetric encryption scheme providing public key
confidentiality. Roughly speaking, this property means that having encrypted
message and a public key y, no one can answer if the message was encrypted by
using y with probability non-negligibly greater than 0.5 without corresponding
private key. There are many schemes with this property. The simplest example
is ElGamal encryption scheme. More details can be found for example in [6].

Preliminaries: Let us assume that yCi is a public key of the i− th censor and
xCi denote the corresponding private key. For the i − th block the signer
prepares another public key ŷCi = (yCi)ki = gxCi

·ki , where g is a generator
of an appropriate group. Signer computes also EyCi

(ki) – a ciphertext of ki

encrypted using the key yCi . In practise the ElGamal encryption scheme can
be used here. Note that private key corresponding to ŷCi is xCi · ki.

Signing: Modified signature has a form:

SigxS(IDm||t||ŷC1 ||ŷC2 || . . . ||ŷCt ||m̄1|| . . . ||m̄t)

where m̄i is a chameleon hash of the block mi created by using key ŷCi

analogously like in section 2.2. The signature should be provided with all
ciphertexts EyCi

(ki) for 1 ≤ i ≤ t to the censor.
Sanitizing: i-th designated censor can easily retrieve value ki from EyCi

(ki).
Then he can compute the private key xCi · ki necessary for sanitizing the
block of the message. At this stage finding a collision is simple.

Verifying: Verification process looks exactly like in original scheme described
in section 2.2. Note that the verifier uses simply the public keys signed by
the original signer.

Let us note that in the proposed scheme decryption of all EyCi
(ki) is necessary

if one needs to modify the i-th block. Anyway, knowledge gained once could be
used many times for preparing many version of original message with modified
particular block.

6.2 Open Question: Super Strong Transparency

We suppose that it would be very useful to have a scheme that provides even
more strong property. Namely, we would like to construct a scheme that hides
structure of a document to be sanitized. All proposals introduced up to now are
based on the idea of dividing whole messages into independent blocks. One can
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easily note that a verifier is aware of this division. This knowledge can be useful
and reveals some (possible) intentions of the signer. It seems to be very useful to
have a scheme with property that we call super strong transparency - no party
except the signer and the censor is able to establish what was sanitized and
what could be potentially sanitized - even the division into mutable/immutable
blocks remains hidden. We suspect that idea can be particularly interesting if we
combine it with limiting the set of possible modifications that can be injected
into message by the censor. The naive solution based on dividing messages into
single-bit blocks is in principle useless because of many obvious reasons e.g.
size of the signature as well as resources necessary for signature creation and its
verification. We left this issue of constructing practical scheme with super strong
transparency as an open problem.

7 Sanitizable Signatures and Time-Released Crypto

We think that it could be very fruitful to combine the idea of sanitizable signa-
tures with time-released crypto techniques. They provide the possibility of re-
vealing a secret or verifying a signature after a pre-determined time has passed
([16]) or other certain events have happened ([9]). In fact all these techniques
reveal particular secret values when a certain condition is fulfilled. We can easily
see that each legal value x can be given as x̂ = hash(x, r) where r is a random
value. So to prove the validity of x, the censor needs r. This value can be revealed
at a later time, using techniques from [9,16]. Thanks to this simple improvement
we can allow the censor to insert more and more blocks into the signed message
in particular position depending on the situation. For example, we can allow
inserting certain subtitles to a film if the age of a viewer is confirmed.

8 Conclusions, Open Problems

We have presented several extensions of sanitizable signatures and their appli-
cations. We hope that they can be useful and make the original scheme even
more applicable in many business situations, especially in a distributed environ-
ment. We feel that many questions about sanitizable signatures, as well as other
schemes that allow limited changes of signed messages, remain open. For exam-
ple a more efficient way of indicating acceptable set of modifications could be
very useful. We suppose that it would be very interesting to prepare a practical
sanitizable signature scheme that is not based on dividing the document into
blocks and provides strong transparency.
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Köpfer, Hubert 118
Kurosawa, Kaoru 29

Lauks, Anna 343
Lee, Dongwook 81
Lee, Hangrok 41
Lee, Jaewon 233
Lee, Mun-Kyu 41

Lee, Sangjin 81
Lee, Younho 233, 328
Liao, Chen-Yin 222
Lim, Joa Sang 246
Lin, Xiaodong 136

Mendel, Florian 8
Moon, Ho-Kun 206
Morikawa, Yoshitaka 94
Muller, Frédéric 267

Nieto, Juan Manuel 296
Nogami, Yasuyuki 94

Park, Jinsub 107
Park, Jong-Ho 206
Park, Kang Ryoung 246
Park, Sangwoo 286
Park, Yongsu 328
Pelzl, Jan 118
Peng, Kun 296
Peyrin, Thomas 267
Pieprzyk, Josef 65
Pramstaller, Norbert 8

Rechberger, Christian 8
Rhee, Myung-Soo 206
Ryu, Gwonho 81

Sarkar, Palash 7, 310
Seo, Seung-Woo 206
Shen, Hong 136
Shi, Zhiguo 166
Shpilrain, Vladimir 22
Song, JooSeok 179
Song, Jung Hwan 51
Steinwandt, Rainer 118
Sung, Soo Hak 286
Suzuki, Kazuhiro 29

Tonien, Dongvu 29
Toyota, Koji 29
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